img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (1): 122-130.doi: 10.11872/j.issn.1005-2518.2022.01.069

• 采选技术与矿山管理 • 上一篇    下一篇

焦家金矿磨矿介质配比优化试验研究与应用

衣成玉1(),裴英杰2(),马帅3   

  1. 1.山东黄金矿业(莱州)有限公司焦家金矿,山东 莱州 261441
    2.昆明理工大学国土资源工程学院,云南 昆明 650093
    3.省部共建复杂有色金属资源清洁利用国家重点实验室,云南 昆明 650093
  • 收稿日期:2021-06-03 修回日期:2021-11-06 出版日期:2022-02-28 发布日期:2022-04-25
  • 通讯作者: 裴英杰 E-mail:ycy1968513@126.com;z179180802@163.com
  • 作者简介:衣成玉(1968-),男,山东莱州人,高级工程师,从事选矿设备与工艺研究工作。ycy1968513@126.com
  • 基金资助:
    国家自然科学基金地区科学基金项目“磨矿条件对黑钨矿微细粒粒度特性和界面性质影响及调控机制研究”(51964044)

Experimental Study and Application of Grinding Medium Ratio Optimization in Jiaojia Gold Mine

Chengyu YI1(),Yingjie PEI2(),Shuai MA3   

  1. 1.Jiaojia Gold Mine, Shandong Gold Mining (Laizhou) Co. , Ltd. , Laizhou 261441, Shandong, China
    2.School of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
    3.State Key Laboratory for Clean Utilization of Complex Nonferrous Metal Resources, Kunming 650093, Yunnan, China
  • Received:2021-06-03 Revised:2021-11-06 Online:2022-02-28 Published:2022-04-25
  • Contact: Yingjie PEI E-mail:ycy1968513@126.com;z179180802@163.com

摘要:

针对焦家金矿选矿厂球磨机单位球耗高、磨机效率偏低和磨矿产品粒度组成不均匀等问题,基于矿石力学性质和磨矿循环产品粒度分布,采用段氏球径半理论公式计算得到推荐方案介质配比,并建立对照方案进行实验室磨矿对比试验,最终确定初装球方案为:Φ90∶Φ70∶Φ50∶Φ40∶Φ30=15∶25∶20∶15∶25。2016年10月26日开始对焦家金矿3#球磨机(MQG2736)进行工业试验,工业试验后磨机排矿磨矿细度 -0.074 mm产率较试验前提高了4.06%,粗粒级+0.30 mm产率降低了5.64%,磨机处理量提高了6.42%,表明推荐球比方案更适合现场球磨作业,有利于提高磨矿产品质量。

关键词: 介质配比, 磨机处理量, 磨矿产品质量, 磨矿优化, 选矿厂, 焦家金矿

Abstract:

Gold has been widely used because of its easy forging and corrosion resistance,and it promotes the development of daily life,industry and global economy. Gold ore separation is mainly composed of raw ore crushing,grinding classification,flotation and concentration. The quality of grinding products is directly determined by the addition system of grinding medium,which affects the beneficiation index and the economic benefit of the concentrator. Grinding operation is an important part of gold recovery. The optimization of grinding medium system can effectively improve the quality of grinding products,and make more qualified fractions enter the flotation process,which is beneficial to the separation and enrichment of gold mines. There are some problems in the first-stage grinding workshop of Jiaojia gold mine,such as high unit ball consumption of ball mill,low grinding efficiency and unreasonable particle size composition of grinding products,which greatly affect the normal production situation and separation index of concentrator and lead to low economic benefits of mine. In order to solve the above problems,this paper optimized the grinding medium addition system of ball mill to improve the quality of grinding products. The mechanical properties of ore were determined and the particle size composition of ore was screened. Based on the mechanical properties of ore and the particle size distribution of grinding cycle products,the medium ratio of the recommended scheme was calculated by Duan's semi-theoretical formula of spherical diameter as Φ90∶Φ70∶Φ50∶Φ40∶Φ30=15∶25∶20∶15∶25. In addition,four groups of schemes,i.e.,field scheme,recommended scheme,oversize scheme and undersize scheme,were tested in laboratory grinding contrast test and grinding contrast test under different sand return ratio in a discontinuous Φ450×450 mm ball mill in laboratory. The yield of roughing grade,easy-to-select grade,optional grade and superfine grade were taken as evaluation indexes. Finally,the initial ball loading scheme was determined as follows:Φ90∶Φ70∶Φ50∶Φ40∶Φ30=15∶25∶20∶15∶25.The industrial test of 3# mill (MQG2736) in Jiaojia gold mine was started on October 26,2016. After the industrial test,the content of -0.074 mm in ore discharge of No.3 mill increased by 4.06%,the content of +0.30 mm decreased by 5.64%,and the processing capacity of No.3 mill increased by 6.42% during the industrial test period. This shows that the recommended ball ratio scheme is more suitable for increasing the content of middle easy-to-choose fraction and reducing the content of over-crushed fraction than before the industrial test,which can effectively increase the output per hour,and has certain reference significance for similar mines.

Key words: medium ratio, mill processing capacity, grinding product quality, grinding optimization, concentrator, Jiaojia gold mine

中图分类号: 

  • TD921+

表1

焦家金矿矿石力学性质测定结果"

编号矿石密度/(g·cm-3单轴抗压强度/MPa平均强度/MPa割线弹性模量E50/(×104 MPa)E50平均值割线泊松比U50U50平均值
1#矿块2.7272.4080.501.221.200.430.37
88.201.140.34
80.801.240.33
2#矿块2.8867.2066.701.041.210.280.28
70.001.250.26
62.801.340.31
3#矿块2.7869.2072.401.031.090.320.32
71.201.070.33
76.801.170.32

表2

焦家金矿磨矿循环产品粒度组成"

粒级/mm球磨机给矿旋流器沉砂旋流器溢流球磨机排矿
产率/%正累积产率/%产率/%正累积产率/%产率/%正累积产率/%产率/%正累积产率/%
合计100.00-100.00-100.00-100.00-
+15.000.290.29------
15.00~12.004.124.410.160.16----
12.00~8.0018.3822.791.401.56--0.560.56
8.00~5.0032.5955.384.265.82--2.312.87
5.00~2.506.0561.432.308.12--2.765.63
2.50~0.9013.2174.648.2816.400.020.027.9413.57
0.90~0.457.8582.4917.0333.430.420.4415.0528.62
0.45~0.304.0886.5719.6653.093.123.5617.3245.94
0.30~0.202.2288.7912.3965.486.4410.0011.5457.48
0.20~0.152.7491.5313.5379.0115.6325.6314.4171.89
0.15~0.101.0692.594.4383.448.8334.464.9576.84
0.10~0.0741.0093.593.7987.239.4243.884.2281.06
0.074~0.0381.6995.284.3891.6116.1660.043.5484.60
0.038~0.0191.3896.662.5294.1311.3971.436.5091.10
0.019~0.0101.0597.711.8195.9410.3881.813.2594.35
-0.0102.29100.004.06100.0018.19100.005.65100.00

表3

球磨机初装球比计算表"

级别/mm

全给矿产率

/%

扣除-0.30 mm后待磨产率γ待/%各组适宜球径/mm

推荐球比

/%

合计100.00100.00-100.00
+8.0012.1915.799015
8.00~5.0018.4323.897025
5.00~0.9014.9219.345020
0.90~0.4512.4416.124015
0.45~0.3019.1824.863025
-0.3022.84---

表4

球磨机钢球初装方案"

方案介质配比平均球径/mm
推荐方案Φ90∶Φ70∶Φ50∶Φ40∶Φ30=15∶25∶20∶15∶2554.50
现场方案Φ100∶Φ80∶Φ60∶Φ40=20∶20∶40∶2068.00
偏大方案Φ90∶Φ70∶Φ50∶Φ40=20∶20∶40∶2060.00
偏小方案Φ80∶Φ60∶Φ40∶Φ30=20∶20∶40∶2050.00

表5

返砂比为400%条件下磨矿试验结果综合指标"

方案γ+0.30mm/%γ-0.15+0.038mm/%γ-0.038mm/%γ-0.074mm/%
推荐方案1.1436.0342.8059.42
现场方案4.5432.4437.7452.81
偏大方案2.1733.3441.3056.52
偏小方案1.3836.7843.8360.21

表6

返砂比为100%条件下磨矿试验结果综合指标"

方案γ+0.30mm/%γ-0.15+0.038mm/%γ-0.038mm/%γ-0.074mm/%
推荐方案2.1836.8338.0057.33
现场方案6.7732.2835.1350.71
偏大方案3.7334.7236.9054.47
偏小方案2.1936.9241.0958.40

表7

推荐方案及现场方案磨矿产品各粒级中金属分布率"

粒级

/mm

推荐方案现场方案

产率

/%

品位

/(×10-6

分布率

/%

产率

/%

品位

/(×10-6

分布率

/%

合计100.002.94100.00100.002.94100.00
0.90~0.450.450.300.050.600.400.08
0.45~0.301.731.200.716.171.202.52
0.30~0.208.683.5010.4813.282.4010.85
0.20~0.1513.316.1027.6212.542.5010.67
0.15~0.1014.273.4016.7313.143.3014.75
0.10~0.0744.235.808.343.563.504.24
0.074~0.03818.333.4021.2015.584.2022.26
0.038~0.01911.641.907.5210.293.6012.60
0.019~0.0109.071.304.018.161.604.44
-0.01018.290.603.7416.683.1017.59

表8

工业试验前后3#磨机排矿粒级对比"

试验阶段时间-0.074 mm/%+0.30 mm/%
工业试验前2016年3月18.9445.94
工业试验后2016年11月8日25.1934.15
2016年11月15日22.0642.12
2016年11月22日21.7544.64
均值23.0040.30

图1

工业试验前后3#磨机排矿粒级均值对比"

表9

工业试验前后3#球磨机溢流产品粒度组成"

粒级/mm工业试验前工业试验后
产率/%正累积产率/%负累积产率/%产率/%正累积产率/%负累积产率/%
总和100.00--100.00--
0.305.535.53100.004.044.04100.00
0.30~0.1525.1730.7094.4725.8229.8695.96
0.15~0.1010.5841.2869.3010.6840.5470.14
0.10~0.0749.9351.2158.724.2544.7959.46
0.074~0.03814.9766.1848.7922.0266.8155.21
-0.03833.82100.0033.8233.19100.0033.19

图2

试验前后3#球磨机磨矿溢流产品的粒级指标比较"

表10

工业试验前后3#球磨机处理量"

日期工业试验前工业试验后
运行时间/h总处理量/t平均处理量/(t·h-1运行时间/h总处理量/t平均处理量/(t·h-1
平均值4 068.35141 461.9734.773 824.45138 177.1936.13
2016-05-06至2016-05-20343.4011 579.5333.72608.0019 839.2132.63
2016-05-21至2016-06-20736.0025 918.6035.22720.0026 494.9036.80
2016-06-21至2016-07-20720.0025 284.5335.12744.0027 495.0836.96
2016-07-21至2016-08-20744.0025 972.1934.91702.4524 822.6435.34
2016-08-21至2016-09-20725.9525 075.9134.54672.0025 525.0237.98
2016-09-21至2016-10-24799.0027 631.2134.58378.0014 000.3437.04

表11

工业试验前后3#球磨机处理量数据"

时间

总处理量

/t

运行时间

/h

每小时处理量/(t·h-1处理量提高率/%
2016-05-21至2016-10-24129 882.443 724.9534.87-
2016-11-21至2017-04-05106 667.522 874.0037.116.42

表12

工业试验后焦家金矿选厂经济效益"

年份

/年

新增产值/万元新增利税/万元新增利润/万元节资总额/万元总效益/万元
累计51 470.2519 429.9032 040.351 045.3733 085.72
20169 663.093 647.826 015.27204.416 219.68
201711 308.824 269.107 039.72209.967 249.68
20189 885.713 731.866 153.85207.156 361.00
201910 078.713 804.576 274.14212.116 486.25
202010 533.923 976.556 557.37211.746 769.11
Bor A, Jargalsaikhan B, Uranchimeg K, al et,2021. Particle morphology control of metal powder with various experimental conditions using ball milling[J]. Powder Technology,(394):181-190.
Cao Y, Tong X, Xie X, al et,2021. Effects of grinding media on the flotation performance of cassiterite[J]. Minerals Engineering,(168):106919.
Duan Xixiang,1997. Research on the modification of the theoretical formula of the sphere and half of the sphere[J].Science in China Series E:Technical Science,(6):510-515.
Huang P, Ding Y F, Wu L, al et,2019. A novel approach of evaluating crushing energy in ball mills using regional total energy[J]. Powder Technology,(355):289-299.
Li Hongsong,2019. Study on causes and preventive methods of low desorption rate of gold loaded carbon [J]. China Metal Bulletin,(3):176-178.
Li Liang, Wang Shanshan,2018. Suggestions on gold resources tax legislation of China [J]. Land Resources Information,( 9):18-23.
Liu Qing, Peng Liangzhen, Wang Bao, al et,2015. Effects of different size and proportion of steel balls on grinding size in ball mill[J].Nonferrous Metals (Mineral Processing Se-ction),(6):68-73.
Pei Yingjie, Xiao Qingfei, Zhang Qian, al et,2021. Optimizing yield comparison of an iron ore fine grinding intermediate grain size by orthogonal test method and response surface method[J].Bulletin of the Chinese Ceramic Society,40(4):1304-1311.
Tang Shaoyu, Xu Guodong, Deng Xingxing, al et,2020. Experimental study on mineral processing of a gold mine in Lixian County,Sichuan Province[J].Sichuan Nonferrous Metals,(3):11-14.
Tang Xinmin,2016. Automation and energy saving transformation of grinding production information in Dongguashan Copper Mine[J]. Mining Equipment,(5):48-54.
Wang Yong, Sun Yaming,2020. Experimental study on selective grinding performance in Vanadium-Titanium Magnetite Ore in Panzhihua[J]. Mining Research and Development,40(11):156-159.
Wu Caibin, Zhou Yichao, Cheng Changmin, al et,2016. Analysis of different contact ways of grinding media in grinding kinetics in Tungsten [J]. Nonferrous Metal Engineering,6(4):58-62.
Wu Guiyi, An Zhandong, Xue Gangqin, al et,2018. Effect of ball size distribution on grinding dynamics of iron ore particles [J]. Nonferrous Metal Engineering,8(3):95-99.
Xiao Qingfei, Li Guihai, Shi Guiming, al et,2007. Application of accurate ball loading and addition in Shizishan copper mine [J]. Metal Mine,36(12):68-71.
Yang Jinlin, Mo Fan, Zhou Wentao, al et,2017. Review of research on selective grinding [J]. Multipurpose Utilization of Mineral Resources,(5):1-6.
Yu Haokai, Wang Xiao, Li Jishun, al et,2020. Study on relationship between grinding medium size and grinding efficiency of ball mill[J]. Mining & Processing Equipment,48(3):32-37.
Yu J W, Jin S H, Raju K, al et,2021. Analysis of individual and interaction effects of processing parameters on wet grinding performance in ball milling of alumina ceramics using statistical methods[J].Ceramics International,47(22):31202-31213.
Yuan Chengfang, Xiong Yanfang, Tong Jiaqi, al et,2019. Study on copperflotation with ultrafine grinding from a copper slag[J].Non-ferrous Metals (Mineral Processing Section),(5):56-62.
Zhang Qian, Xiao Qingfei, Yang Sen, al et,2020. Experimental research on quality optimization of ball mills in Kalatonk Copper-Nickel Ore [J]. Multipurpose Utilization of Mineral Resources,(4):100-105.
Zhao Yaoqing, Wang Jia,2018. Experimental study on the recovery of tailings gold from a certain gold mine in Shandong province[J].World Nonferrous Metals,(17):186-187.
Zhou Qingli, Bai Limei, Ma Yuxin, al et,2020. Experimental study on optimization of vibration grinding parameters by response surface method[J]. Multipurpose Utilization of Mineral Resources,(5):203-208,44.
段希祥,1997.球径半理论公式的修正研究[J].中国科学E辑:技术科学,(6):510-515.
李洪松,2019.载金炭解吸率低原因及预防方法研究[J].中国金属通报,(3):176-178.
李亮,王珊珊,2018.对我国黄金资源税立法的若干思考[J].国土资源情报,(9):18-23.
刘青,彭良振,王宝,等,2015.介质的尺寸和配比对球磨机磨矿粒度影响的研究[J].有色金属(选矿部分),(6):68-73.
裴英杰,肖庆飞,张谦,等,2021.正交试验法及响应曲面法优化某铁矿细磨中间粒级产率的对比试验[J].硅酸盐通报,40(4):1304-1311.
唐劭禹,徐国栋,邓星星,等,2020.四川理县某金矿选矿试验研究[J].四川有色金属,(3):11-14.
唐新民,2016.冬瓜山铜矿磨矿生产信息自动化节能改造[J].矿业装备,(5):48-54.
王勇,孙亚明,2020.攀枝花钒钛磁铁矿选择性磨矿性能试验研究[J].矿业研究与开发,40(11):156-159.
吴彩斌,周意超,程长敏,等,2016.不同接触方式磨矿介质的钨矿磨矿动力学分析[J].有色金属工程,6(4):58-62.
吴桂义,安站东,薛钢琴,等,2018.钢球级配对铁矿石的磨矿动力学研究[J].有色金属工程,8(3):95-99.
肖庆飞,李桂海,石贵明,等,2007.精确化装补球法在狮子山铜矿的应用[J].金属矿山,36(12):68-71.
杨金林,莫凡,周文涛,等,2017.选择性磨矿研究概述[J].矿产综合利用,(5):1-6.
于浩凯,王晓,李济顺,等,2020.磨介粒径与球磨机磨矿效率关系研究[J].矿山机械,48(3):32-37.
袁程方,熊艳芳,童佳琪,等,2019.采用超细磨矿回收水淬铜渣试验研究[J].有色金属(选矿部分),(5):56-62.
张谦,肖庆飞,杨森,等,2020.喀拉通克铜镍矿球磨机磨矿作业质量优化试验研究[J].矿产综合利用,(4):100-105.
赵钥庆,王佳,2018.山东某金矿选矿尾渣金的再回收试验研究[J].世界有色金属,(17):186-187.
周庆立,白丽梅,马玉新,等,2020.响应曲面法优化振动磨磨矿工艺参数试验研究[J].矿产综合利用,(5):203-208,44.
[1] 王雨琦,郑高华,王毓华,卢东方,郑霞裕. 选矿厂计算机辅助设计(CAD)与虚拟现实技术应用现状及展望[J]. 黄金科学技术, 2021, 29(5): 729-739.
[2] 张晓飞,吴荣泽,石卿,牛树银,孙爱群,张福祥. 胶东地区玲珑金矿和焦家金矿成矿控矿构造对比研究[J]. 黄金科学技术, 2015, 23(5): 14-19.
[3] 任洪文,刘兆富,韩智尧,王京海,邓国平. 三维激光扫描技术在测绘采空区中的应用[J]. 黄金科学技术, 2013, 21(3): 64-68.
[4] 王力群,孙利,赵志强,李远,张京涛. 进路分步放顶采矿方法的研究与应用[J]. 黄金科学技术, 2012, 20(6): 76-78.
[5] 唐泽伟,郭广军,王恩敬,吕广耀,叶延岭,张姗. 山东焦家金矿中深部矿体成矿规律及成矿预测[J]. 黄金科学技术, 2012, 20(6): 51-55.
[6] 杨勇,邱英魁,杨杰,何国强,刘军晓. 山东焦家金矿爆破工艺优化研究[J]. 黄金科学技术, 2012, 20(6): 79-81.
[7] 郭广军,刘明君,徐咏彬,程蔚,叶延龄,郑小礼,高海峰,赵荣欣. 山东焦家金矿床工程岩体稳定性分类研究[J]. J4, 2012, 20(4): 71-75.
[8] 张晓飞,孙爱群,牛树银,张福祥,刘成,武玉璞. 胶东焦家金矿田成矿构造及控矿作用分析[J]. J4, 2012, 20(3): 18-22.
[9] 邱福胜. 常闭型斜井防跑车装置在焦家金矿的应用[J]. J4, 2012, 20(2): 86-88.
[10] 张福祥,牛树银,刘成,张晓飞,王铮,赵莎. 胶西北焦家金矿田控矿构造分析[J]. J4, 2012, 20(2): 8-13.
[11] 董金奎,申延,邱俊刚. 焦家金矿寺庄矿区岩体节理裂隙调查与矿岩稳定性分析[J]. J4, 2012, 20(2): 58-61.
[12] 郭建民,王卓,王彦玮,冷寒松. 山东焦家金矿充填站降尘改造实践[J]. J4, 2011, 19(5): 62-64.
[13] 郎雅平,张智斌,姜浩刚. 建设工程审计在金属矿山的应用[J]. J4, 2011, 19(5): 69-71.
[14] 张广峰,李涛. 基于ITIL 的矿山综合信息化运维管理模式研究[J]. J4, 2011, 19(5): 76-78.
[15] 杨纪光. 下向进路假底胶结充填采矿法在焦家金矿的应用[J]. J4, 2011, 19(5): 33-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王恩敬,郭广军,赵荣欣,王彦伟,于晓杰,吕广耀,王伟涛. 山东寺庄金矿床构造—矿化网络结构研究及应用[J]. J4, 2012, 20(4): 76 -80 .
[2] 孙杨,罗黎明,邓红卫. 金属矿山深部采场稳定性分析与结构参数优化[J]. 黄金科学技术, 2017, 25(1): 99 -105 .
[3] 杨龙伟, 杨兴科, 高雅宁, 何虎军, 褚娜娜, 张正民. 南秦岭汉阴县长沟金矿床三维模型与定位预测[J]. 黄金科学技术, 2018, 26(3): 270 -278 .
[4] 俞明亮. 我国黄金矿山的开采现状与发展方向[J]. J4, 1990, 0(5): 20 .
[5] 肖风利,曾庆栋,马凤山,王昭坤,孙之夫,孙宗峰. 胶东西北部重要金成矿断裂带特征[J]. 黄金科学技术, 2018, 26(4): 396 -405 .
[6] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108 -119 .
[7] 杨超,郭利杰,王劼,史采星,许文远. 某金矿大倍线加压充填技术研究与应用[J]. 黄金科学技术, 2019, 27(1): 89 -96 .
[8] 谢玉华,高华,张哲,杨亮,柯新星,刘晓敏,罗建镖,刘琦,许坤林,刘继顺,王智琳,孔华,刘飚. 湖南通道地区金矿床成矿流体特征及成矿物质来源:来自流体包裹体、H-O-S同位素的证据[J]. 黄金科学技术, 2021, 29(1): 74 -89 .
[9] 张爱民,杨洪昌,范纯超,徐厚臻,陈胜虎,李海基. U型钢支架与木棚联合支护工艺在焦家金矿的应用[J]. 黄金科学技术, 2013, 21(1): 53 -57 .
[10] 刘国栋,温桂军,刘彩杰,鲍中义*,孙忠全,范家盟,李山,闫春明,郭志峰. 招平断裂北段水旺庄深部超大型金矿床的发现、特征和找矿方向[J]. 黄金科学技术, 2017, 25(3): 38 -45 .