img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (5): 761-770.doi: 10.11872/j.issn.1005-2518.2021.05.152

• 采选技术与矿山管理 • 上一篇    

某含碳微细粒难处理金矿浮选提金工艺研究

吴天骄(),曹欢(),牛芳银,靳建平,王海军,陈军,卫亚儒   

  1. 西安西北有色地质研究院有限公司,陕西 西安 710054
  • 收稿日期:2020-08-24 修回日期:2021-09-10 出版日期:2021-10-31 发布日期:2021-12-17
  • 通讯作者: 曹欢 E-mail:77096499@qq.com;1443479028@qq.com
  • 作者简介:吴天骄(1983-),男,贵州黔东南人,高级工程师,从事选矿与矿山选矿厂生产调试研究工作。77096499@qq.com

Study on Gold Extraction from a Carbon-bearing Fine-grained Refractory Gold Ore by Flotation Process

Tianjiao WU(),Huan CAO(),Fangyin NIU,Jianping JIN,Haijun WANG,Jun CHEN,Yaru WEI   

  1. Xi’an Northwest Geological Institute for Nonferrous Metals Co. ,Ltd. ,Xi’an 710054,Shaanxi,China
  • Received:2020-08-24 Revised:2021-09-10 Online:2021-10-31 Published:2021-12-17
  • Contact: Huan CAO E-mail:77096499@qq.com;1443479028@qq.com

摘要:

某含碳微细粒金矿金含量为5.56×10-6,大部分金呈微细粒包裹于含碳硅质板岩碎屑中,有机碳和石墨含量分别为1.33%和1.50%,是典型的含碳难处理金矿。为实现该含碳难处理金矿的浮选预富集,进行了先浮选碳质后浮选金和直接浮选金等不同工艺流程的探讨试验,并在最佳流程基础上进行了直接浮选工艺的条件优化试验。结果表明:采用直接浮选工艺可以获得品位较高的金精矿,当磨矿细度为-0.074 mm含量占比为85%时,可获得金品位为30.01×10-6,回收率为76.18%的金精矿,金回收率较先浮选碳质后浮选金工艺明显提高;调整工艺流程结构,采用一段粗磨浮选—扫选精矿再磨浮选工艺,可获得金品位为33.45×10-6、金回收率为79.93%的金精矿。该流程选矿指标相较于一次磨矿细度为-0.074 mm含量占比为85%的指标更优,是适宜含碳微细粒难处理金矿石的处理流程。

关键词: 含碳金矿, 微细粒金, 难处理金矿, 选矿富集, 浮选工艺, 阶段磨矿

Abstract:

Carbon-bearing gold ores account for more than 20% of the total gold deposits in China,so the treatment technology of carbon-bearing gold ores has been widely concerned.The flotation of carbon-bearing gold deposits mainly adopts the two following technologies,one is to remove carbon first then float the gold-bearing minerals,the other is to float carbon and gold-bearing minerals together.In the process of carbon removal,some gold is often lost in the carbon ore,resulting in a low total gold recovery.Therefore,it is of great significance to carry out the research on the direct flotation technology of carbon-bearing gold ores.The content of a carbon-containing fine-grained gold is 5.56×10-6.The gold mainly exists as naked or half naked and silicate package gold,and the grain size of the gold inlay is uneven.Natural gold is closely related to fine-grained cryptocrystalline quartz and carbon,and most of them are wrapped in carbon-containing siliceous slate clastics as fine particles.The harmful element carbon in the ore is relatively high,the organic carbon and graphite content is 1.33% and 1.50% respectively,which is a typical carbon-containing refractory gold mine.In order to realize the pre-enrichment of this refractory carbon-bearing gold ore by flotation,different technological processes such as carbon flotation followed by flotation gold and direct flotation gold were investigated and the conditions of direct flotation were optimized.The results show that higher grade gold concentrate can be obtained by direct flotation.According to the condition optimization test,the gold concentrate with a gold grade of 30.01×10-6 and a recovery rate of 76.18% can be obtained when the grinding fineness is -0.074 mm ac-counting for 85%.Its gold concentrate grade and recovery are both higher than the condition of grinding fineness is -0.074 mm accounted for 75%.The results also prove that the reason why the gold containing carbon is difficult to be treated is that the carbon and gold are closely related and belong to fine grain.By adjusting the structure of the technological process,the gold concentrate with 33.45×10-6 gold grade and recovery of 79.93% can be obtained by adopting a coarse grinding flotation-sweep concentrate and then grinding flotation.Compared with the index of one-time grinding process with ginding fineness of -0.074 mm accounting for 85%,this pro-cess is better,and the reduction of grinding energy consumption is reduced,making it an appropriate treatment process for this ore.

Key words: carbon-bearing gold ore, fine-gained gold, refractory gold mine, mineral processing enrichment, flotation process, stage grinding

中图分类号: 

  • TD953

表1

原矿多元素分析结果"

成分含量成分含量
Au*5.56CaO4.72
Ag8.30MgO2.23
Pb0.010Al2O32.31
Cu0.016K2O0.57
Zn0.028Na2O0.058
TFe2.10P0.29
V2O50.38WO30.060
TiO20.15As0.022
Co0.0014Bi0.0001
Ni0.013SiO267.39
Sb0.007TC6.84
Mn0.040LOI9.90
S0.81Hg*0.47
Ba0.91

表2

原矿金物相分析结果"

金物相含量/(×10-6占比/%
合计5.59100.00
裸露—半裸露金2.3842.58
碳酸盐包裹金0.264.65
赤褐铁矿包裹金0.468.23
硫化物包裹金1.0618.96
硅酸盐包裹金1.4325.58

表3

原矿碳物相分析结果"

碳物相含量/%占比/%
合计6.39100.00
碳酸盐中碳3.5655.71
有机碳1.3320.81
石墨碳1.5023.47

表4

磨矿细度为-0.074 mm占75%的原矿粒度筛析结果"

粒级/mm产率/%金品位/(×10-6金占有率/%
合计100.005.46100.00
+0.07426.293.0114.49
-0.074+0.03824.932.9913.65
-0.038+0.01914.918.6323.56
-0.019+0.0109.494.537.87
-0.01024.399.0540.43

图1

矿浆pH值调整剂种类试验流程"

表5

矿浆pH值调整剂种类试验结果"

调整剂种类及 用量/(g·t-1产品名称产率/%金品位 /(×10-6金回收率 /%

不添加调整剂

pH=6.5

粗精矿22.0316.8068.11
中矿4.296.905.45
尾矿73.681.9526.44
合计100.005.43100.00

Na2CO3,2 000

pH=7.5

粗精矿17.5522.8070.30
中矿5.607.407.28
尾矿76.851.6622.42
合计100.005.69100.00

石灰,2 000

pH=8.5

粗精矿20.8019.8973.03
中矿8.105.527.89
尾矿71.101.5219.08
合计100.005.66100.00

H2SO4,1 840

pH=6.0

粗精矿21.6517.5070.23
中矿7.206.508.67
尾矿71.151.6021.10
合计100.005.40100.00

图2

石灰用量试验结果"

表6

活化剂种类试验结果"

活化剂种类及用量

/(g·t-1

产品名称

产率

/%

金品位

/(×10-6

金回收率

/%

不添加活化剂粗精矿19.0021.4671.58
中矿3.056.303.37
尾矿77.951.8325.05
合计100.005.70100.00

(NH42SO4,1 000

CuSO4,400

粗精矿20.8020.4575.35
中矿4.155.864.31
尾矿75.051.5320.34
合计100.005.65100.00
(NH42SO4,1 000粗精矿21.4019.1672.68
中矿3.655.683.67
尾矿74.951.7823.65
合计100.005.64100.00
CuSO4,400粗精矿22.3018.9577.23
中矿3.155.943.42
尾矿74.551.4219.35
合计100.005.47100.00

图3

CuSO4用量试验结果"

表7

抑制剂种类试验结果"

抑制剂种类及用量

/(g·t-1

产品名称

产率

/%

金品位 /(×10-6

金回收率

/%

不添加抑制剂粗精矿25.7516.6378.18
中矿7.453.664.98
尾矿66.801.3816.84
合计100.005.48100.00
CMC,100粗精矿27.4015.8378.19
中矿8.253.435.1
尾矿64.351.4416.71
合计100.005.55100.00
(NaPO36,500粗精矿20.2518.8171.96
中矿4.75.394.79
尾矿75.051.6423.25
合计100.005.29100.00
Na2SiF6,500粗精矿21.7018.5174.79
中矿5.155.275.05
尾矿73.151.4820.16
合计100.005.37100.00
水玻璃,1 000粗精矿21.9017.9073.42
中矿4.454.753.96
尾矿73.651.6422.62
合计100.005.34100.00

表8

捕收剂种类试验结果"

捕收剂种类及用量

/(g·t-1

产品名称

产率

/%

金品位

/(×10-6

金回收率

/%

Y89

140+70+70+70

粗精矿17.5521.8170.74
中矿3.507.114.60
尾矿78.951.6924.66
合计100.005.41100.00
丁基黄药, 140+70+70+70粗精矿11.3522.8068.49
中矿3.407.714.82
尾矿80.251.8126.69
合计100.005.44100.00
异戊基黄药, 140+70+70+70粗精矿20.2020.4475.13
中矿4.804.724.12
尾矿75.001.5220.75
合计100.005.50100.00
乙基黄药, 140+70+70+70粗精矿15.0024.8768.13
中矿3.008.674.75
尾矿82.001.8127.12
合计100.005.47100.00

表9

异戊基黄药用量试验结果"

异戊基黄药用量

/(g·t-1

产品名称

产率

/%

金品位

/(×10-6

金回收率

/%

60+30+30+15粗精矿15.9021.5067.59
中矿2.907.234.15
尾矿81.201.7628.26
合计100.005.06100.00
100+50+50+25粗精矿19.7519.7973.89
中矿3.407.713.46
尾矿80.251.8122.65
合计100.005.44100.00
140+70+70+35粗精矿20.4519.8175.27
中矿3.255.743.47
尾矿76.301.521.26
合计100.005.38100.00
180+90+90+45粗精矿22.2518.0575.34
中矿3.154.562.69
尾矿74.601.5721.97
合计100.005.33100.00

图4

磨矿细度试验结果"

图5

磨矿细度-0.074 mm含量占比为85%的闭路浮选试验流程"

表10

闭路试验结果"

磨矿细度产品名称

产率

/%

金品位

/(×10-6

金回收率

/%

-0.074 mm含量占比85%精矿14.7130.0176.18
尾矿85.291.6223.82
合计100.005.79100.00
-0.074 mm含量占比75%精矿16.4026.0875.83
尾矿83.601.6224.17
合计100.005.63100.00

图6

调整后的闭路浮选试验流程"

表11

粗精矿再磨闭路试验结果"

产品名称产率/%金品位/(×10-6金回收率/%
金精矿15.8543.1144.80
金精矿27.6026.0235.13
尾矿228.351.919.62
尾矿158.201.0110.45
原矿100.005.63100.00

表12

尾矿金物相分析结果"

相类含量/(×10-6相率/%
合计1.77100.00
裸露—半裸露金0.1810.17
碳酸盐包裹金0.2715.25
赤褐铁矿包裹金0.2614.69
硫化物包裹金0.4726.55
硅酸盐包裹金0.5933.33
Chen Jun,Wei Yaru,2018.Research status quo of the pretreatment technology for refractory carbonaceous gold ore[J].Gold,39(12):59-62.
Dong Yanhong,Zeng Huiming,Yang Jianwen,al et,2018.High efficient flotation processing technology for the low-grade refractory graphite ore[J].Acta Mineralogica Sinica,38(3):336-342.
Huang Huaiguo,Zhang Qing,Lin Honghan,2013.Research and application status of extraction technology for the refractory gold ore[J].Gold Science and Technology,21(1):71-77.
Huang Runzhi,2015.Research on Mineral Processing Process of Gold Ore Containing Carbon and Arsenic[D].Nanning:Guangxi University.
Ibrahim H H,Bilsborrow P E,Phan A N,2021.Intensification of pre-treatment and fractionation of agricultural residues[J].Chemical Engineering and Processing-Process Intensification,159:108231.
Jin J P,Han Y X,Li H,al et,2019.Mineral phase and structure changes during roasting of fine-grained carbonaceous gold ores and their effects on gold leaching efficiency[J].Chinese Journal of Chemical Engineering,27(5):1184-1190.
Konadu K T,Mendoza D M,Huddy R J,al et,2020.Biological pretreatment of carbonaceous matter in double refractory gold ores:A review and some future considerations[J].Hydrometallurgy,196:105434.
Lan Zhiqiang,Lan Zhuoyue,Li Difei,al et,2016.Beneficaition test study on a refractory copper-gold-silver ore in Kangba of Sichuan[J].Province Mining & Metallurgy,25(5):5-9.
Li Heng,2019.The Effect of Carbonaceous Matter on the Flotation of High Carbon-bearing Gold[D].Xi’an:Xi’an University of Architecture and Technology.
Li Jianmin,Liu Dianwen,Song Kaiwei,2016.Mineral processing technology of a refractory gold ore bearing arsenic and organic carbon[J].Chinese Journal of Rare Metals,40(10):1053-1059.
Liu Zhilou,Yang Tianzu,2014.Treatment status for refractory gold ores[J].Precious Metals,35(1):79-83,89.
Ma Fangtong,Gao Likun,Dong Fang,al et,2016.Pretreatment of refractory gold ores and current research status and progress of intensified cyanidation process[J].Gold,37(4):51-55.
Niu Huiqun,Dong Linlin,Yuan Shuiping,al et,2019.Research status on carbonaceous matter characteristic and decarbonization of carlin-type gold ore[J].Nonferrous Metals(Extractive Metallurgy),(6):33-39.
Peng Xiao,2016.Flotaion of One Low Grade Microgranular Disseminated Gold Ore from Gansu and Its Application[D].Kunming:Kunming University of Science and Technology.
Song Xuewen,Zhu Jiaqian,Luo Zengxin,al et,2018.Study on the gold flotation technology and process mineralogy of a cyanide residue[J].Gold Science and Technology,26(1):89-97.
Sun Liugen,Yuan Chaoxin,Wang Yun,al et,2015.Status and development of gold extraction from refractory gold ore[J].Nonferrous Metals(Extractive Metallurgy),(4):38-43.
Tan Baihua,2017.Study on flotation process in a fine gold ore containing carbon[J].World Nonferrous Metals,(19):88-89.
Tian Qinghua,Wang Hao,Xin Yuntao,al et,2017.Research status of pretreatment of refractory gold ore[J].Nonferrous Metals Science and Engineering,8(2):83-89.
Wu Bing,2020.Current status and progress of the research on complex refractory gold ore pretreatment technology[J].Gold,41(5):65-72.
Wu H,Feng Y L,Li H R,Wang H J,al et,2020.Co-recovery of manganese from pyrolusite and gold from carbonaceous gold ore using fluidized roasting coupling technology[J].Chemical Engineering and Processing-Process Intensification,147:107742.
Xu Xiaoyang,2013.Review of research on leaching process of carbonaceous refractory gold ore[J].Gold Science and Technology,21(1):82-88.
Yu Xue,2011.Study on floatation process of a fine-particle gold ore containing carbon[J].Gold,32(11):52-55.
Yu Haiping,Liu Jing,2011.Research on refractory gold ore leaching process[J].Chemistry of Guangzhou,39(17):25-27.
Zhang Xiaomin,Li Heng,Li Yue,al et,2020.Experimental study on the effect of high carbon gold ore flotation by carbonaceous matter[J].Nonferrous Metals Engineering,10(2):74-81.
Zhang Zhaohui,Xie WEiwei,Yu Yantao,2016.Mineral processing investigation of the arsenic and carbon bearing micro-fine particle gold primary grain[J].Hunan Nonferrous Metals,32(4):21-24.
Zhang Zuojin,Wang Qianqian,Dai Shujuan,2017.The development of pretreatment technology of carbonaceous gold ore[J].Conservation and Utilization of Mineral Resourses,(5):99-104.
Zhu Changliang,Yang Hongying,Wang Dawen,al et,2009.Current situations of pretreatment method research of the refractory gold ores with As and carbon[J].China Mining Magazine,18(4):66-69.
陈军,卫亚儒,2018.难处理含碳金矿石预处理技术研究现状[J].黄金,39(12):59-62.
董艳红,曾惠明,杨建文,等,2018.微细粒低品位难选石墨的高效浮选工艺研究[J].矿物学报,38(3):336-342.
黄怀国,张卿,林鸿汉,2013.难选冶金矿提取工艺工业应用现状[J].黄金科学技术,21(1):71-77.
黄闰芝,2015.高碳含砷难选金矿的选矿工艺研究[D].南宁:广西大学.
兰志强,蓝卓越,李涤非,等,2016.四川康巴难选铜金银矿综合回收选矿试验研究[J].矿冶,25(5):5-9.
李恒,2019.碳质物对高含碳金矿浮选影响的试验研究[D].西安:西安建筑科技大学.
李健民,刘殿文,宋凯伟,2016.某含碳含砷难处理金矿石选矿工艺研究[J].稀有金属,40(10):1053-1059.
刘志楼,杨天足,2014.难处理金矿的处理现状[J].贵金属,35(1):79-83,89.
马方通,高利坤,董方,等,2016.难处理金矿预处理及强化氰化技术研究现状及进展[J].黄金,37(4):51-55.
牛会群,佟琳琳,衷水平,等,2019.卡林型金矿碳质物特征及其去碳方法研究现状[J].有色金属(冶炼部分),(6):33-39.
彭晓,2016.某含碳高砷微细粒金矿提金工艺研究[D.]昆明:昆明理工大学.
宋学文,朱加乾,罗增鑫,等,2018.某氰渣工艺矿物学及金浮选工艺研究[J].黄金科学技术,26(1):89-97.
孙留根,袁朝新,王云,等,2015.难处理金矿提金的现状及发展趋势[J].有色金属(冶炼部分),(4):38-43.
谭白华,2017.浮选工艺在某含碳微细粒金矿石的研究[J].世界有色金属,(19):88-89.
田庆华,王浩,辛云涛,等,2017.难处理金矿预处理方法研究现状[J].有色金属科学与工程,8(2):83-89.
吴冰,2020.复杂难处理金矿石预处理工艺研究现状及进展[J].黄金,41(5):65-72.
许晓阳,2013.碳质难处理金矿浸出工艺研究进展[J].黄金科学技术,21(1):82-88.
于雪,2011.某含碳微细粒金矿石浮选工艺研究[J].黄金,32(11):52-55.
俞海平,刘菁,2011.难处理金矿石浸出工艺研究现状[J].广州化工,39(17):25-27.
张晓民,李恒,李越,等,2020.碳质物对高含碳金矿浮选影响的试验研究[J].有色金属工程,10(2):74-81.
张朝辉,薛伟伟,余延涛,2016.某含砷含碳微细粒嵌布难处理金矿石选矿试验[J].湖南有色金属,32(4):21-24.
张作金,王倩倩,代淑娟,2017.碳质金矿预处理技术研究进展[J].矿产保护与利用,(5):99-104.
朱长亮,杨洪英,王大文,等,2009.含砷含碳双重难处理金矿石预处理方法研究现状[J].中国矿业,18(4):66-69.
[1] 王国彬,蓝卓越,王瑞康,赵清平,杨迪,李博琦. 银含量对方铅矿浮选的影响及其机理研究进展[J]. 黄金科学技术, 2021, 29(5): 749-760.
[2] 杨波,童雄,谢贤,王晓. 选冶联合提高甘肃某难浸金矿浮选尾矿金回收率的试验研究[J]. 黄金科学技术, 2020, 28(2): 285-292.
[3] 谢雄辉. 陇南紫金难处理金精矿工艺矿物学研究[J]. 黄金科学技术, 2019, 27(6): 950-956.
[4] 赵文强,姜传进,石宝宝. 氰化尾渣选硫工艺优化研究[J]. 黄金科学技术, 2019, 27(1): 129-136.
[5] 石贵明, 周意超, 李明. 河南某难选低品位微细粒金红石选矿试验研究[J]. 黄金科学技术, 2018, 26(3): 334-341.
[6] 宋言, 杨洪英, 佟琳琳, 马鹏程, 金哲男. 甘肃某复杂难处理金矿细菌氧化—氰化实验研究[J]. 黄金科学技术, 2018, 26(2): 241-247.
[7] 宋学文,朱加乾,罗增鑫,陈波. 某氰渣工艺矿物学及金浮选工艺研究[J]. 黄金科学技术, 2018, 26(1): 89-97.
[8] 王浩,田庆华,辛云涛,郭学益. 含锑难处理金矿臭氧氧化预处理工艺研究[J]. 黄金科学技术, 2016, 24(4): 154-159.
[9] 张俊杰,王帅,张天齐,李超,李宏煦 . 适于金矿堆浸的制粒新技术研究[J]. 黄金科学技术, 2016, 24(4): 149-153.
[10] 丁文涛,蔡创开,郭金溢,许晓阳. 某难处理金矿热压氧化渣预处理试验研究[J]. 黄金科学技术, 2016, 24(1): 108-112.
[11] 崔维,王仕兴,彭金辉,张利波,张耕玮. 超声波技术在黄金冶炼与加工领域的应用[J]. 黄金科学技术, 2015, 23(3): 93-98.
[12] 吴涛,张广积,李向阳,杨超,解强,赵欢,易妍妍. 反应器结构对生物氧化含砷难处理金矿效率的影响[J]. 黄金科学技术, 2015, 23(2): 88-93.
[13] 蓝碧波,伍赠玲,衷水平,王春,陈淑萍,王俊娥,张焕然,张鹏. 含铜难处理金矿氨氰浸出矿浆选择性电积金试验研究[J]. 黄金科学技术, 2014, 22(5): 91-95.
[14] 许晓阳,蔡创开,丁文涛. 某难处理金矿热压预氧化—氰化工艺研究[J]. 黄金科学技术, 2014, 22(4): 135-138.
[15] 许涛,衷水平,殷志刚. 碱性环境中黄铁矿表面反应机理研究[J]. 黄金科学技术, 2014, 22(4): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!