img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (5): 749-760.doi: 10.11872/j.issn.1005-2518.2021.05.015

• 采选技术与矿山管理 • 上一篇    下一篇

银含量对方铅矿浮选的影响及其机理研究进展

王国彬1,2(),蓝卓越1,2(),王瑞康1,2,赵清平1,2,杨迪1,李博琦1   

  1. 1.昆明理工大学国土资源工程学院,云南 昆明 650093
    2.云南省金属矿尾矿资源二次利用工程研究中心,云南 昆明 650093
  • 收稿日期:2021-01-11 修回日期:2021-07-15 出版日期:2021-10-31 发布日期:2021-12-17
  • 通讯作者: 蓝卓越 E-mail:523099784@qq.com;xingdakg@126.com
  • 作者简介:吴天骄(1983-),男,贵州黔东南人,高级工程师,从事选矿与矿山选矿厂生产调试研究工作。77096499@qq.com|王国彬(1990-),男,黑龙江绥化人,助理工程师,从事浮选理论与工艺研究工作。523099784@qq.com
  • 基金资助:
    国家自然科学基金项目“含银方铅矿磨浮一体化的多因素耦合作用研究”(51960402)

Effect of Silver Content on Galena Flotation and Research Progress on Its Mechanism

Guobin WANG1,2(),Zhuoyue LAN1,2(),Ruikang WANG1,2,Qingping ZHAO1,2,Di YANG1,Boqi LI1   

  1. 1.Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    2.Yunnan Province Engineering Research Center for Reutilization of Metal Tailings Resources,Kunming 650093,Yunnan,China
  • Received:2021-01-11 Revised:2021-07-15 Online:2021-10-31 Published:2021-12-17
  • Contact: Zhuoyue LAN E-mail:523099784@qq.com;xingdakg@126.com

摘要:

为了阐明银含量对方铅矿浮选的影响,提高含银方铅矿中伴生银的综合回收效率,通过全面梳理前人研究成果,对含银方铅矿的资源状况、工艺流程和药剂制度进行了总结。首先,从不同维度和层面(从试验到模拟、从宏观到微观)综述了银含量对方铅矿的影响,其中包括银含量对方铅矿浮选行为及表面接触角的影响。然后,评述了前人利用红外光谱、微热动力学、电化学和量子化学等分析方法开展的有关银含量对方铅矿浮选行为影响机理的研究进展,上述分析方法相互验证,均证实银矿物对方铅矿的浮选有促进作用,且银含量与促进程度呈正相关。最后,针对含银方铅矿今后研究方向和银铅锌矿资源开发,提出科学、合理的建议,如:在现场生产中应尽量避免使用石灰调浆,如必须使用时,应控制好石灰用量,从而减少伴生银的损失。

关键词: 含碳金矿, 微细粒金, 难处理金矿, 选矿富集, 浮选工艺, 阶段磨矿, 银含量, 方铅矿, 浮选行为, 促进作用, 石灰, 机理研究

Abstract:

The resources of silver-bearing galena in China are large,but the comprehensive recovery of silver is lower. Mostly mining enterprises and scientific research institutes have conducted studies tending to optimization of technological process and reagent regulation. Although they have made a great deal of achievements,they could not dissolve completely the radical issues that the recovery of silver is low. Meanwhile,the effect of silver content on flotation performance of galena is less explored,which leads to be difficult for the concentrator to significantly improve silver recovery index,resulting in incomplete of resources utiliazation and resources waste.For this reason,this paper summarized the work done by predecessors in detail,such as the resource status of silver-bearing galena,the current flotation process of silver-bearing galena and the reagent system. At the same time,the effects of silver content on the flotation behavior of galena were summarized,such as the increase of the surface area of synthetic silver-bearing galena,the change of Zeta potential in the slurry during flotation process,the different adsorption amount of collector on the surface of galena,and the transformation of electrochemical characteristic peak,etc.. The mechanism of the effect of the silver content on the flotation behavior of galena were analyzed in detail from experimental to simulation,macroscopic to microscopic aspects,respectively. At the last,in view of the shortcomings of the current resource characteristics,technological process,reagent system and research mechanism,some reasonable suggestions are also put forward for the development of silver-bearing lead-zinc ore resources,such as exploring the technical scheme or technological process with high efficiency and low cost,developing unifying reagent of cost,efficiency,environmental protection,non-toxic and harmless and so on.

Key words: carbon-bearing gold ore, fine-gained gold, refractory gold mine, mineral processing enrichment, flotation process, stage grinding, silver content, galena, flotation behavior, prompting effect, lime, mechanism research

中图分类号: 

  • TD953

表1

原矿多元素分析结果"

成分含量成分含量
Au*5.56CaO4.72
Ag8.30MgO2.23
Pb0.010Al2O32.31
Cu0.016K2O0.57
Zn0.028Na2O0.058
TFe2.10P0.29
V2O50.38WO30.060
TiO20.15As0.022
Co0.0014Bi0.0001
Ni0.013SiO267.39
Sb0.007TC6.84
Mn0.040LOI9.90
S0.81Hg*0.47
Ba0.91

表1

常见的方铅矿浮选流程及指标"

文献来源元素品位-0.074 mm占比/%浮选流程浮选指标方案优缺点
曹进成等(2012)αPb 4.67%;αZn 1.33%;αAg 1 221×10-675优先浮选(铅精选 -0.074 mm占92%)

铅精矿:βPb 70.04%、εPb 97.75%、

βAg 1 541×10-6、εAg 79.56%;

锌精矿:βZn 43.73%、εZn 82.55%

铅、锌回收率均较高,铅品位较高,但药剂制度较复杂
张颖新等(2012)αPb 2.02%;αZn 2.04%;αAg 39.51×10-640优先浮选

铅精矿:βPb 60.35%、εPb 85.28%、

βAg 928×10-6、εAg 79.19%;

锌精矿:βZn 50.16%、εZn 70.86%

产品互含较低
罗仙平等(2011)αPb 1.34%;αZn 8.44%;αAg 901×10-680优先浮选

铅精矿:βPb 65.15%、εPb 60.29%、

βAg 3 200×10-6、εAg 44.09%;

锌精矿:βZn 58.25%、εZn 83.65%、

βAg 230×10-6、εAg 30.97%

技术指标有所提升,银在方铅矿精矿中富集较多;但流程较长,优先浮铅需一粗四精二扫作业,浮锌作业需一粗二精二扫作业
黄和平(2018)

αPb 1.03%;

αZn 6.29%;

αAg 35.651×10-6

80优先浮选—分级浮选(-0.048 mm占80%)

铅精矿:βPb 49.77%、εPb 73.85%、

βAg 571×10-6、εAg 24.38%;

锌精矿:βZn 52.07%、εZn 92.13%、

βAg 184.87×10-6、εAg 57.71%

药剂用量大
周菁(2010)αPb 6.95%;αZn 6.01%;αAg 126.1×10-678铅优先浮选—锌硫混合浮选—铅中矿再磨再选

铅精矿:βPb 66.06%、εPb 91.12%、

βAg 1 500.23×10-6、εAg 83.36%

中性pH条件下浮选;中矿再磨有利于矿物间的单体解离,减少过磨;银富集比高
周菁(2010)

αPb 9.43%;

αZn 6.37%;

αAg 193.71×10-6

78铅优先浮选—锌硫混合浮选—铅中矿再磨再选

铅精矿:βPb 65.23%、εPb92.92%、

βAg 1 461.92×10-6、εAg 86%

中性pH条件下浮选;中矿再磨有利于矿物间的单体解离,减少过磨;银富集比高
宋龑(2020)αPb 0.48%;αZn 0.75%;αAg 901×10-680铅银混浮—锌浮选药剂用量较大

图1

药剂制度对不同含银方铅矿浮选回收率的影响(兰志强,2017)"

表2

原矿金物相分析结果"

金物相含量/(×10-6占比/%
合计5.59100.00
裸露—半裸露金2.3842.58
碳酸盐包裹金0.264.65
赤褐铁矿包裹金0.468.23
硫化物包裹金1.0618.96
硅酸盐包裹金1.4325.58

表3

原矿碳物相分析结果"

碳物相含量/%占比/%
合计6.39100.00
碳酸盐中碳3.5655.71
有机碳1.3320.81
石墨碳1.5023.47

图2

杂质对1 mmol/L黄原酸丁酯下的方铅矿浮选回收的影响(Chen,2015a)galena at butyl xanthate concentration of 1 mmol/L(Chen,2015a)"

表4

磨矿细度为-0.074 mm占75%的原矿粒度筛析结果"

粒级/mm产率/%金品位/(×10-6金占有率/%
合计100.005.46100.00
+0.07426.293.0114.49
-0.074+0.03824.932.9913.65
-0.038+0.01914.918.6323.56
-0.019+0.0109.494.537.87
-0.01024.399.0540.43

图1

矿浆pH值调整剂种类试验流程"

图3

不同银含量对方铅矿表面ζ电位的影响(兰志强,2017)"

图4

不同银含量对方铅矿表面捕收剂吸附量的影响(兰志强,2017)"

表5

矿浆pH值调整剂种类试验结果"

调整剂种类及 用量/(g·t-1产品名称产率/%金品位 /(×10-6金回收率 /%

不添加调整剂

pH=6.5

粗精矿22.0316.8068.11
中矿4.296.905.45
尾矿73.681.9526.44
合计100.005.43100.00

Na2CO3,2 000

pH=7.5

粗精矿17.5522.8070.30
中矿5.607.407.28
尾矿76.851.6622.42
合计100.005.69100.00

石灰,2 000

pH=8.5

粗精矿20.8019.8973.03
中矿8.105.527.89
尾矿71.101.5219.08
合计100.005.66100.00

H2SO4,1 840

pH=6.0

粗精矿21.6517.5070.23
中矿7.206.508.67
尾矿71.151.6021.10
合计100.005.40100.00

图2

石灰用量试验结果"

图5

不同银含量对方铅矿表面接触角的影响(兰志强,2017)"

图6

方铅矿在10-3mol/L丁基黄药溶液中的红外光谱(Chen,2015a)"

表6

活化剂种类试验结果"

活化剂种类及用量

/(g·t-1

产品名称

产率

/%

金品位

/(×10-6

金回收率

/%

不添加活化剂粗精矿19.0021.4671.58
中矿3.056.303.37
尾矿77.951.8325.05
合计100.005.70100.00

(NH42SO4,1 000

CuSO4,400

粗精矿20.8020.4575.35
中矿4.155.864.31
尾矿75.051.5320.34
合计100.005.65100.00
(NH42SO4,1 000粗精矿21.4019.1672.68
中矿3.655.683.67
尾矿74.951.7823.65
合计100.005.64100.00
CuSO4,400粗精矿22.3018.9577.23
中矿3.155.943.42
尾矿74.551.4219.35
合计100.005.47100.00

图3

CuSO4用量试验结果"

表2

丁基黄药在含不同杂质方铅矿表面吸附的热力学和动力学参数与浮选回收率(蓝丽红,2012) (impurities and flotation recovery(Lan,2012))"

矿物类型浮选回收率/%热力学和动力学参数
反应速率系数 k/(×10-3·s-1反应级数n
PbS65.35.220.278
Pb(Ag)S1005.870.93
Pb(Bi)S72.45.360.75
Pb(Cu)S55.70.0211.32
Pb(Mn)S64.72.921.11
Pb(Sb)S52.90.5831.24
Pb(Zn)S46.60.0191.30

图7

黄药在含杂质方铅矿表面的吸附热与浮选回收率的关系(Lan et al.,2016)"

表7

抑制剂种类试验结果"

抑制剂种类及用量

/(g·t-1

产品名称

产率

/%

金品位 /(×10-6

金回收率

/%

不添加抑制剂粗精矿25.7516.6378.18
中矿7.453.664.98
尾矿66.801.3816.84
合计100.005.48100.00
CMC,100粗精矿27.4015.8378.19
中矿8.253.435.1
尾矿64.351.4416.71
合计100.005.55100.00
(NaPO36,500粗精矿20.2518.8171.96
中矿4.75.394.79
尾矿75.051.6423.25
合计100.005.29100.00
Na2SiF6,500粗精矿21.7018.5174.79
中矿5.155.275.05
尾矿73.151.4820.16
合计100.005.37100.00
水玻璃,1 000粗精矿21.9017.9073.42
中矿4.454.753.96
尾矿73.651.6422.62
合计100.005.34100.00

表8

捕收剂种类试验结果"

捕收剂种类及用量

/(g·t-1

产品名称

产率

/%

金品位

/(×10-6

金回收率

/%

Y89

140+70+70+70

粗精矿17.5521.8170.74
中矿3.507.114.60
尾矿78.951.6924.66
合计100.005.41100.00
丁基黄药, 140+70+70+70粗精矿11.3522.8068.49
中矿3.407.714.82
尾矿80.251.8126.69
合计100.005.44100.00
异戊基黄药, 140+70+70+70粗精矿20.2020.4475.13
中矿4.804.724.12
尾矿75.001.5220.75
合计100.005.50100.00
乙基黄药, 140+70+70+70粗精矿15.0024.8768.13
中矿3.008.674.75
尾矿82.001.8127.12
合计100.005.47100.00

图8

pH=9.18时掺杂方铅矿电极在0.001 mol/L黄药中的循环伏安曲线(Chen,2015a)"

图9

杂质对氧化峰1的影响(Chen,2015a)"

表9

异戊基黄药用量试验结果"

异戊基黄药用量

/(g·t-1

产品名称

产率

/%

金品位

/(×10-6

金回收率

/%

60+30+30+15粗精矿15.9021.5067.59
中矿2.907.234.15
尾矿81.201.7628.26
合计100.005.06100.00
100+50+50+25粗精矿19.7519.7973.89
中矿3.407.713.46
尾矿80.251.8122.65
合计100.005.44100.00
140+70+70+35粗精矿20.4519.8175.27
中矿3.255.743.47
尾矿76.301.521.26
合计100.005.38100.00
180+90+90+45粗精矿22.2518.0575.34
中矿3.154.562.69
尾矿74.601.5721.97
合计100.005.33100.00

图4

磨矿细度试验结果"

图10

方铅矿晶胞参数与银含量的关系(蓝丽红,2012)"

表3

合成掺杂方铅矿样品的晶胞常数(蓝丽红,2012)"

矿物类型测量值计算值
PbS (天然)0.5928

0.6018

[文献值0.5924(Wasserstein,1951)]

PbS(合成)0.5926
Pb(Ag)S0.59230.6008
Pb(Zn)S0.59180.5958
Pb(Cu)S0.59200.5858
Pb(Sb)S0.59310.6130
Pb(Bi)S0.59290.6250
Pb(Mn)S0.59230.5760

图5

磨矿细度-0.074 mm含量占比为85%的闭路浮选试验流程"

表10

闭路试验结果"

磨矿细度产品名称

产率

/%

金品位

/(×10-6

金回收率

/%

-0.074 mm含量占比85%精矿14.7130.0176.18
尾矿85.291.6223.82
合计100.005.79100.00
-0.074 mm含量占比75%精矿16.4026.0875.83
尾矿83.601.6224.17
合计100.005.63100.00

图11

O2在方铅矿表面吸附构型(Chen,2015b)"

图6

调整后的闭路浮选试验流程"

表11

粗精矿再磨闭路试验结果"

产品名称产率/%金品位/(×10-6金回收率/%
金精矿15.8543.1144.80
金精矿27.6026.0235.13
尾矿228.351.919.62
尾矿158.201.0110.45
原矿100.005.63100.00

表12

尾矿金物相分析结果"

相类含量/(×10-6相率/%
合计1.77100.00
裸露—半裸露金0.1810.17
碳酸盐包裹金0.2715.25
赤褐铁矿包裹金0.2614.69
硫化物包裹金0.4726.55
硅酸盐包裹金0.5933.33
Chen Jun,Wei Yaru,2018.Research status quo of the pretreatment technology for refractory carbonaceous gold ore[J].Gold,39(12):59-62.
Dong Yanhong,Zeng Huiming,Yang Jianwen,al et,2018.High efficient flotation processing technology for the low-grade refractory graphite ore[J].Acta Mineralogica Sinica,38(3):336-342.
Ao Shunfu,Wang Chunguang,Hu Hongxi,al et,2019. Processing experimental study on a low-grade lead-zinc ore containing silver[J]. Nonferrous Metals(Mineral Processing Section),(4):32-39.
Huang Huaiguo,Zhang Qing,Lin Honghan,2013.Research and application status of extraction technology for the refractory gold ore[J].Gold Science and Technology,21(1):71-77.
Barkhordari H R,Jorjani E,Eslami A,et al. 2009. Occurrence mechanism of silicate and aluminosilicate minerals in Sarcheshmeh copper flotation concentrate[J]. International Journal of Minerals,Metallurgy and Materials,16(5):494-499.
Huang Runzhi,2015.Research on Mineral Processing Process of Gold Ore Containing Carbon and Arsenic[D].Nanning:Guangxi University.
Cao Jincheng,Cao Fei,Lü Liang,al et,2012. Study on mineral processing of a Pb-Zn-Ag polymetallic ore in Shandong province[J]. Industrial Minerals & Processing,41(1):20-21,30.
Ibrahim H H,Bilsborrow P E,Phan A N,2021.Intensification of pre-treatment and fractionation of agricultural residues[J].Chemical Engineering and Processing-Process Intensification,159:108231.
Chen J H,Ke B L,Lan L H,al et,2015a. Influence of Ag,Sb,Bi and Zn impurities on electrochemical and flotation behavior of galena[J]. Minerals Engineering,(72):10-16.
Jin J P,Han Y X,Li H,al et,2019.Mineral phase and structure changes during roasting of fine-grained carbonaceous gold ores and their effects on gold leaching efficiency[J].Chinese Journal of Chemical Engineering,27(5):1184-1190.
Chen J H,Ke B L,Lan L H,al et,2015b. DFT and experimental studies of oxygen adsorption on galena surface bearing Ag,Mn,Bi and Cu impurities[J].Minerals Engineering,(71):170-179.
Konadu K T,Mendoza D M,Huddy R J,al et,2020.Biological pretreatment of carbonaceous matter in double refractory gold ores:A review and some future considerations[J].Hydrometallurgy,196:105434.
Chen J,Wang L,Chen Y,al et,2011. A DFT study of the effect of natural impurities on the electronic structure of galena[J]. International Journal of Mineral Processing,98(3/4):132-136.
Lan Zhiqiang,Lan Zhuoyue,Li Difei,al et,2016.Beneficaition test study on a refractory copper-gold-silver ore in Kangba of Sichuan[J].Province Mining & Metallurgy,25(5):5-9.
Chen Shenghu,2012. The Research of Beneficiation Process and Mechanism for a Lead-Zinc Ore in Guangdong[D]. Ganzhou:Jiangxi University of Science and Technology.
Li Heng,2019.The Effect of Carbonaceous Matter on the Flotation of High Carbon-bearing Gold[D].Xi’an:Xi’an University of Architecture and Technology.
Cheng Kai,2016.The Efficient and Environment-friendly Age-nts HQ77 and D82:Characterization,Mechanism,and Practical Application in Flotation of Lead-Zinc Separation[D]. Nanning:Guangxi University.
Li Jianmin,Liu Dianwen,Song Kaiwei,2016.Mineral processing technology of a refractory gold ore bearing arsenic and organic carbon[J].Chinese Journal of Rare Metals,40(10):1053-1059.
Du Xianyan,2014. Mineral Processing Technology and Mechanism Studies on Lead-Zinc-Silver Polymetallic Sulphide Ore[D]. Ganzhou:Jiangxi University of Science and Te-chnology.
Liu Zhilou,Yang Tianzu,2014.Treatment status for refractory gold ores[J].Precious Metals,35(1):79-83,89.
Feng Qiming,Chen Jianhua,2014. Electrochemistry of Sulfide Mineral Flotation[M]. Changsha:Central South University of Technology Press.
Ma Fangtong,Gao Likun,Dong Fang,al et,2016.Pretreatment of refractory gold ores and current research status and progress of intensified cyanidation process[J].Gold,37(4):51-55.
Fu Dan,2010. The Study of Flotation and Surface Adsorption Mechanism of Copper-Lead-Zinc Sulphide Ore[D]. Ganzhou:Jiangxi University of Science and Technology.
Niu Huiqun,Dong Linlin,Yuan Shuiping,al et,2019.Research status on carbonaceous matter characteristic and decarbonization of carlin-type gold ore[J].Nonferrous Metals(Extractive Metallurgy),(6):33-39.
Hansford G S,Vargas T,2001. Chemical and electrochemical basis of bioleaching processes[J].Hydrometallurgy,59(2/3):135-145.
Huang Heping,2018. Study on the Flotation Characteristics of Different Particle Size of Lead-Zinc Sulfide Ore[D]. Ganzhou:Jiangxi University of Science and Technology.
Peng Xiao,2016.Flotaion of One Low Grade Microgranular Disseminated Gold Ore from Gansu and Its Application[D].Kunming:Kunming University of Science and Technology.
Ji Jun,2011. Research on phased flotation process of carbon-bearing lead-zinc ore with fine grain size[J].Nonferrous Me-tals(Mineral Processing Section),(3):8-11.
Song Xuewen,Zhu Jiaqian,Luo Zengxin,al et,2018.Study on the gold flotation technology and process mineralogy of a cyanide residue[J].Gold Science and Technology,26(1):89-97.
Jiang Sufang,2011. Study on Pb-Zn-Ag of multi-metalliferous ore flotation technology in Tibet[J].Hunan Nonferrous Me-tals,27(2):10-14,48.
Sun Liugen,Yuan Chaoxin,Wang Yun,al et,2015.Status and development of gold extraction from refractory gold ore[J].Nonferrous Metals(Extractive Metallurgy),(4):38-43.
Tan Baihua,2017.Study on flotation process in a fine gold ore containing carbon[J].World Nonferrous Metals,(19):88-89.
Lan L H,Chen J H,Li Y Q,al et,2016. Microthermokinetic study of xanthate adsorption on impurity-doped galena[J]. Transactions of Nonferrous Metals Society of China,26(1):272-281.
Tian Qinghua,Wang Hao,Xin Yuntao,al et,2017.Research status of pretreatment of refractory gold ore[J].Nonferrous Metals Science and Engineering,8(2):83-89.
Lan Lihong,2012. The Effect of Lattice Defect of Galena on the Surface Property,Molecular Absorption of Flotation Reagents and Electrochemical Behavior[D].Nanning:Guangxi University.
Lan Zhiqiang,2017. Study on Flotation Behavior and Mechanism of Silver-bearing Galena[D].Kunming:Kunming Uni-versity of Science and Technology.
Wu Bing,2020.Current status and progress of the research on complex refractory gold ore pretreatment technology[J].Gold,41(5):65-72.
Lee K,Archibald D,McLean J,2009. Reuter flotation of mixed copper oxide and sulfide minerals with xanthate and hydroxamate collectors[J].Minerals Engineering,22(4):395-401.
Li Weizhong,2007. Research on Flotation Separation of Complex Lead-Zinc-Sliver Sulfide Ore and Its Practice[D]. Changsha:Central South University.
Wu H,Feng Y L,Li H R,Wang H J,al et,2020.Co-recovery of manganese from pyrolusite and gold from carbonaceous gold ore using fluidized roasting coupling technology[J].Chemical Engineering and Processing-Process Intensification,147:107742.
Li Yanling,Li Ronggai,Bai Limei,2020. Study on comprehensive recovery process of complex multi-metals Cu-Pb-Zn-Au-Ag Ore in Henan province[J]. Metal Mine,(2):82-87.
Xu Xiaoyang,2013.Review of research on leaching process of carbonaceous refractory gold ore[J].Gold Science and Technology,21(1):82-88.
Liu Jiaxiang,Wang Guanpu,Zhang Zhiyuan,1995. On the separation technology of lead-zinc sulfide combined middling[J]. Journal of Xi’an University of Architecture & Technology(Natural Science Edition),(4):457-460.
Yu Xue,2011.Study on floatation process of a fine-particle gold ore containing carbon[J].Gold,32(11):52-55.
Luo Xianping,Zhou Hepeng,Zhou Yue,al et,2011. New technique to improve dressing indexes of associated silver in complex lead-zinc ore[J]. Mining and Metallurgical Engineering,31(3):35-39.
Yu Haiping,Liu Jing,2011.Research on refractory gold ore leaching process[J].Chemistry of Guangzhou,39(17):25-27.
Mao Yilin,Chen Xiaoqing,Yang Jinzhong,al et,2011. Experimental research on mineral processing technology for separating a complex and refractory oxide lead-zinc ore[J]. Multipurpose Utilization of Mineral Resources,(1):6-10.
Zhang Xiaomin,Li Heng,Li Yue,al et,2020.Experimental study on the effect of high carbon gold ore flotation by carbonaceous matter[J].Nonferrous Metals Engineering,10(2):74-81.
Qin Wei,2013.Design Synthesis and Flotation Mechanism Study on Flotation Reagents for Silver Containing Lead-zinc Ore[D]. Beijing:China University of Mining & Technology,Beijing.
Zhang Zhaohui,Xie WEiwei,Yu Yantao,2016.Mineral processing investigation of the arsenic and carbon bearing micro-fine particle gold primary grain[J].Hunan Nonferrous Metals,32(4):21-24.
Sand W,Gehrke T,Jozsa P G,al et,2001. Biochemistry of bacterial leaching—direct vs. indirect bioleaching[J]. Hydrometallurgy,59(2/3):159-175.
Zhang Zuojin,Wang Qianqian,Dai Shujuan,2017.The development of pretreatment technology of carbonaceous gold ore[J].Conservation and Utilization of Mineral Resourses,(5):99-104.
Song Yan,2020. Study on the mineral processing technology of a complicated refractory lead,zinc and silver polymetallic ore[J]. China Metal Bulletin,(4):20-21.
Zhu Changliang,Yang Hongying,Wang Dawen,al et,2009.Current situations of pretreatment method research of the refractory gold ores with As and carbon[J].China Mining Magazine,18(4):66-69.
Tan Xin,He Fayu,Wu Weiguo,al et,2010. Mineral processing technology on sandstone type low grade lead-zinc oxide ore[J]. Nonferrous Metals Engineering,62(3):115-122.
陈军,卫亚儒,2018.难处理含碳金矿石预处理技术研究现状[J].黄金,39(12):59-62.
Tian Jiangtao,2018. Mineral Processing Experiment Study on a Skarn Pb-Zn Ore from Hebei Province[D].Tangshan:North China University of Science and Technology.
董艳红,曾惠明,杨建文,等,2018.微细粒低品位难选石墨的高效浮选工艺研究[J].矿物学报,38(3):336-342.
Tong Xiong,1996. Theory and Practice of Microbiological Leaching[M]. Beijing:Metallurgical Press.
黄怀国,张卿,林鸿汉,2013.难选冶金矿提取工艺工业应用现状[J].黄金科学技术,21(1):71-77.
Wang Chengxing,Ye Fuxing,Tong Xiong,al et,2013. Comprehensive recovery of associated silver from some silver-rich lead-zinc sulfide ore in Yunnan[J].Mining and Metallurgical Engineering,33(4):67-69,73.
黄闰芝,2015.高碳含砷难选金矿的选矿工艺研究[D].南宁:广西大学.
Wang Hu,2015. Mineral Processing Technology from Nanjing Lead-Zinc-Silver Ore and Studies on Flotation Kinetics[D]. Ganzhou:Jiangxi University of Science and Technology.
兰志强,蓝卓越,李涤非,等,2016.四川康巴难选铜金银矿综合回收选矿试验研究[J].矿冶,25(5):5-9.
Wang Lei,2010. The First Principle Study on the Effect of Lattice Defects on Electronic Structure and Flotation Behavior of Galena[D].Nanning:Guangxi University.
李恒,2019.碳质物对高含碳金矿浮选影响的试验研究[D].西安:西安建筑科技大学.
Wang Qiang,2005. Experimental Research of Strengthen Silver Reclaim in Galena and Sphalerite[D]. Shenyang:Northeastern University.
李健民,刘殿文,宋凯伟,2016.某含碳含砷难处理金矿石选矿工艺研究[J].稀有金属,40(10):1053-1059.
Wasserstein B,1951. Precision lattice measurements of galena[J]. American Mineralogist,36(1/2):102-115.
刘志楼,杨天足,2014.难处理金矿的处理现状[J].贵金属,35(1):79-83,89.
Wen Kai,Chen Jianhua,2019. Experimental study on flotation of copper,lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources,(6):28-32.
马方通,高利坤,董方,等,2016.难处理金矿预处理及强化氰化技术研究现状及进展[J].黄金,37(4):51-55.
Woods R,2000.Recent advances in electrochemistry of sulfide mineral flotation[J]. Transactions of Nonferrous Metals Society of China,10(Supp.1):26-29.
牛会群,佟琳琳,衷水平,等,2019.卡林型金矿碳质物特征及其去碳方法研究现状[J].有色金属(冶炼部分),(6):33-39.
Wu Chuizhi,2012. Research on Flotation Behavior and Mechanism of Artificial Magnetite and Natural Magnetite[D]. Nanning:Guangxi University.
彭晓,2016.某含碳高砷微细粒金矿提金工艺研究[D.]昆明:昆明理工大学.
Wu Rongqing,2008. China has made new progress in prospecting and exploitation of lead-zinc mineral resources[J]. China Metal Bulletin,(25):28-31.
宋学文,朱加乾,罗增鑫,等,2018.某氰渣工艺矿物学及金浮选工艺研究[J].黄金科学技术,26(1):89-97.
Xi Shen,2012. Analysis of present situation of silver mineral resources in China and Abroad[J]. World Nonferrous Metals,(6):60-63.
孙留根,袁朝新,王云,等,2015.难处理金矿提金的现状及发展趋势[J].有色金属(冶炼部分),(4):38-43.
Xiao Jun,Chen Daixiong,Yang Jianwen,2014. Research on beneficiation technology for a polymetallic sulphide ore containing high silver-copper-lead-zinc in Henan[J]. Multipurpose Utilization of Mineral Resources,(4):30-35.
谭白华,2017.浮选工艺在某含碳微细粒金矿石的研究[J].世界有色金属,(19):88-89.
Xiao Tianxiang,2015. Experimental study on comprehensive recycling of a lead-zinc and silver polymetallic mineral[J]. Gansu Metallurgy,37(5):11-15,19.
田庆华,王浩,辛云涛,等,2017.难处理金矿预处理方法研究现状[J].有色金属科学与工程,8(2):83-89.
Zeng Xiaoqin,2009. The First Principle Study on the Effect of Lattice Defects on the Electronic Structure of Sphalerite[D]. Nanning:Guangxi University.
吴冰,2020.复杂难处理金矿石预处理工艺研究现状及进展[J].黄金,41(5):65-72.
Zhang Changqing,Rui Zongyao,Chen Yuchuan,al et,2013. The main successive strategic bases of resources for Pb-Zn deposits in China[J]. Geology in China,40(1):248-272.
许晓阳,2013.碳质难处理金矿浸出工艺研究进展[J].黄金科学技术,21(1):82-88.
Zhang Yingxin,Zhang Chengqiang,Tian Min,2012. Experimental research on flotation technology for a low-grade lead-zinc-silver mineral separation[J]. Multipurpose Utilization of Mineral Resources,(6):28-32,36.
于雪,2011.某含碳微细粒金矿石浮选工艺研究[J].黄金,32(11):52-55.
Zhou Hepeng,2011. Study on Synthesis Recovery Technology and Mechanism of Associated Silver from Huili Zinc Ore in Sichuan Province[D]. Ganzhou:Jiangxi University of Science and Technology.
俞海平,刘菁,2011.难处理金矿石浸出工艺研究现状[J].广州化工,39(17):25-27.
Zhou Hongbo,Pang Yunjuan,2010. Experimental study on mineral processing of a lead zinc sulfide minerals[J]. Modern Mining,26(7):37-39.
张晓民,李恒,李越,等,2020.碳质物对高含碳金矿浮选影响的试验研究[J].有色金属工程,10(2):74-81.
Zhou Jing,2010. Higher efficiency and non-toxic mineral separation technology of complex lead-zinc-sulphur[J].Nonferrous Metals(Mineral Processing Section),(4):43-48.
张朝辉,薛伟伟,余延涛,2016.某含砷含碳微细粒嵌布难处理金矿石选矿试验[J].湖南有色金属,32(4):21-24.
张作金,王倩倩,代淑娟,2017.碳质金矿预处理技术研究进展[J].矿产保护与利用,(5):99-104.
Zhou Yuan,2002. The Dressing of Gold and Silver Ore[M]. Ganzhou:Jiangxi University of Science and Technology Press.
Zhu Yimin,2010. The synthesis of the Ammonium Di-iso-butyl Dithiophosphate and its flotation effect[J]. Metal Mine,(9):68-70.
朱长亮,杨洪英,王大文,等,2009.含砷含碳双重难处理金矿石预处理方法研究现状[J].中国矿业,18(4):66-69.
敖顺福,王春光,胡红喜,等,2019. 某含银低品位铅锌矿石选矿试验研究[J].有色金属(选矿部分),(4):32-39.
曹进成,曹飞,吕良,等,2012. 山东某铅锌银多金属矿选矿试验研究[J].化工矿物与加工,41(1):20-21,30.
陈胜虎,2012. 广东某铅锌矿选矿工艺及机理研究[D]. 赣州:江西理工大学.
程恺,2016. 铅锌分离浮选高效环保新药剂HQ77和D82性能、作用机理和实际应用研究[D].南宁:广西大学.
杜显彦,2014. 铅锌银多金属硫化矿选矿工艺及机理研究[D]. 赣州:江西理工大学.
冯其明,陈建华,2014. 硫化矿浮选电化学[M].长沙:中南大学出版社.
付丹,2010. 铜铅锌多金属硫化矿浮选行为与表面吸附机理研究[D]. 赣州:江西理工大学.
黄和平,2018. 不同粒级铅锌硫化矿浮选特性研究[D].赣州:江西理工大学.
纪军,2011. 微细粒含碳铅锌矿分步浮选工艺研究[J].有色金属(选矿部分),(3):8-11.
蒋素芳,2011.西藏某难选铅锌银硫多金属矿选矿工艺研究[J].湖南有色金属,27(2):10-14,48.
兰志强,2017. 含银方铅矿的浮选行为及机理研究[D].昆明:昆明理工大学.
蓝丽红,2012. 晶格缺陷对方铅矿表面性质、药剂分子吸附及电化学行为影响的研究[D].南宁:广西大学.
黎维中,2007. 难处理铅锌银硫化矿物资源综合回收的研究与实践[D].长沙:中南大学.
李彦令,李荣改,白丽梅,2020. 河南某复杂铜铅锌金银多金属矿综合回收工艺研究[J].金属矿山,(2):82-87.
刘家祥,王冠甫,张治元,1995. 硫化铅锌中矿分离工艺的研究[J].西安建筑科技大学学报,(4):457-460.
罗仙平,周贺鹏,周跃,等,2011. 提高某复杂铅锌矿伴生银选矿指标新工艺研究[J].矿冶工程,31(3):35-39.
毛益林,陈晓青,杨进忠,等,2011. 某复杂难选氧化铅锌矿选矿试验研究[J].矿产综合利用,(1):6-10.
秦伟,2013. 伴生银铅锌矿浮选药剂的设计、合成与浮选机理研究[D].北京:中国矿业大学(北京).
宋龑,2020. 某复杂难选铅锌银多金属矿选矿工艺研究[J].中国金属通报,(4):20-21.
谭欣,何发钰,吴卫国,等,2010. 某砂岩型低品位氧化铅锌矿选矿工艺[J].有色金属工程,62(3):115-122.
田江涛,2018. 河北省某矽卡型铅锌矿选矿试验研究[D].唐山:华北理工大学.
童雄,1996. 微生物浸矿的理论与实践[M].北京:冶金出版社.
王成行,叶富兴,童雄,等,2013. 云南某富银硫化铅锌矿中伴生银的综合回收研究[J].矿冶工程,33(4):67-69,73.
王虎,2015. 南京栖霞山高硫低铅锌银矿高效回收工艺及浮选动力学研究[D].赣州:江西理工大学.
王檑,2010. 晶格缺陷对方铅矿电子结构及浮选行为影响的第一性原理研究[D].南宁:广西大学.
王强,2005. 强化铅锌矿中伴生银回收的试验研究[D].沈阳:东北大学.
温凯,陈建华,2019. 某含银复杂铜铅锌多金属硫化矿浮选试验[J].矿产综合利用,(6):28-32.
吴荣庆,2008. 我国铅锌矿产资源勘查开发取得新进展[J].中国金属通报,(25):28-31.
伍垂志,2012. 人工磁铁矿和天然磁铁矿浮选行为及其机理研究[D].南宁:广西大学.
奚甡,2012.中外银矿资源现状分析[J].世界有色金属,(6):60-63.
肖骏,陈代雄,杨建文,2014. 河南某高含银铜铅锌多金属硫化矿选矿工艺研究[J].矿产综合利用,(4):30-35.
肖天祥,2015. 某铅锌金银多金属矿综合回收选矿试验研究[J].甘肃冶金,37(5):11-15,19.
曾小钦,2009. 晶格缺陷对闪锌矿电子结构影响的第一性原理研究[D].南宁:广西大学.
张长青,芮宗瑶,陈毓川,等,2013. 中国铅锌矿资源潜力和主要战略接续区[J].中国地质,40(1):248-272.
张颖新,张成强,田敏,2012. 豫西低品位铅锌银多金属矿浮选试验研究[J].矿产综合利用,(6):28-32,36.
周贺鹏,2011. 四川会理锌矿伴生银综合回收工艺及机理研究[D]. 赣州:江西理工大学.
周宏波,庞运娟,2010. 某铅锌硫化矿选矿试验研究[J].现代矿业,26(7):37-39.
周菁,2010. 难选铅锌硫矿无毒高效选矿药剂试验研究[J].有色金属(选矿部分),(4):43-48.
周源,2002. 金银矿石的选矿[M].赣州:江西理工大学出版社.
朱一民,2010. 异丁基铵黑药的合成及浮选效果[J].金属矿山,(9):68-70.
[1] 吴天骄,曹欢,牛芳银,靳建平,王海军,陈军,卫亚儒. 某含碳微细粒难处理金矿浮选提金工艺研究[J]. 黄金科学技术, 2021, 29(5): 761-770.
[2] 杨波,童雄,谢贤,王晓. 选冶联合提高甘肃某难浸金矿浮选尾矿金回收率的试验研究[J]. 黄金科学技术, 2020, 28(2): 285-292.
[3] 谢雄辉. 陇南紫金难处理金精矿工艺矿物学研究[J]. 黄金科学技术, 2019, 27(6): 950-956.
[4] 熊子旗, 刘希灵, 李志贤, 李伟亚, 曾星. 两种固化剂对湘潭锰矿区土壤中重金属的固化效应[J]. 黄金科学技术, 2019, 27(5): 762-769.
[5] 涂鸿渐,王李管,陈鑫,任助理,张炬. 基于混合整数规划法的露天矿配矿品位控制[J]. 黄金科学技术, 2019, 27(3): 458-465.
[6] 赵文强,姜传进,石宝宝. 氰化尾渣选硫工艺优化研究[J]. 黄金科学技术, 2019, 27(1): 129-136.
[7] 石贵明, 周意超, 李明. 河南某难选低品位微细粒金红石选矿试验研究[J]. 黄金科学技术, 2018, 26(3): 334-341.
[8] 宋言, 杨洪英, 佟琳琳, 马鹏程, 金哲男. 甘肃某复杂难处理金矿细菌氧化—氰化实验研究[J]. 黄金科学技术, 2018, 26(2): 241-247.
[9] 宋学文,朱加乾,罗增鑫,陈波. 某氰渣工艺矿物学及金浮选工艺研究[J]. 黄金科学技术, 2018, 26(1): 89-97.
[10] 丘学民,陈国宝*,张勤,杨洪英. 从超细粒高铅锌氰化尾渣中浮选回收有价金属的试验研究[J]. 黄金科学技术, 2017, 25(6): 61-67.
[11] 张俊杰,王帅,张天齐,李超,李宏煦 . 适于金矿堆浸的制粒新技术研究[J]. 黄金科学技术, 2016, 24(4): 149-153.
[12] 王浩,田庆华,辛云涛,郭学益. 含锑难处理金矿臭氧氧化预处理工艺研究[J]. 黄金科学技术, 2016, 24(4): 154-159.
[13] 成来顺,黎洪秩,尹力,秦卫军,田海军. 二道河子银铅锌矿床地质特征及找矿方向研究[J]. 黄金科学技术, 2016, 24(3): 58-63.
[14] 丁文涛,蔡创开,郭金溢,许晓阳. 某难处理金矿热压氧化渣预处理试验研究[J]. 黄金科学技术, 2016, 24(1): 108-112.
[15] 卞小冬,宋广君,李晓,宋沛. 某黄金精炼厂贫液吸附HCN试验研究[J]. 黄金科学技术, 2015, 23(3): 89-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!