img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (2): 256-265.doi: 10.11872/j.issn.1005-2518.2021.02.208

• 采选技术与矿山管理 • 上一篇    

基于正交试验的细尾砂—分级尾砂充填体强度研究

黄仁东(),李哲   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2020-12-01 修回日期:2021-01-19 出版日期:2021-04-30 发布日期:2021-05-28
  • 作者简介:黄仁东(1967-),男,湖南长沙人,教授,从事岩石力学与采矿工程研究工作。hrdlb@163.com
  • 基金资助:
    国家重点研发计划项目“深部金属矿集约化连续采矿理论与技术”(2017YFC0602901)

Study on the Strength of Fine Tailings-graded Tailings Packing Body Based on Orthogonal Test

Rendong HUANG(),Zhe LI   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-12-01 Revised:2021-01-19 Online:2021-04-30 Published:2021-05-28

摘要:

为解决某矿山细尾砂充填体流动性差、强度低的问题,通过正交试验和胶结充填试验,探究尾砂料浆浓度、胶凝材料掺量、外加剂掺量和细尾砂掺加比例对充填体强度的影响,得出了各因素影响充填体强度的重要性顺序。通过多元回归分析确定推荐配比参数,并结合试验结果和SEM分析,对充填体微观结构进行进一步的探究。结果表明:各因素影响充填体强度的重要性顺序依次为胶凝材料掺量、料浆浓度、外加剂掺量和细尾砂掺加比例。通过控制变量,可得充填体强度的增长规律,即增大料浆浓度和胶凝材料掺量,均可提高充填体强度;在合适的掺量范围内,充填体强度随外加剂掺量的增加而提高;细尾砂掺量对充填体强度产生较复杂的影响。实际矿房充填推荐配比参数如下:料浆浓度为70%,胶凝材料掺量为20%,外加剂(减水剂)掺量为1‰,细尾砂掺量为30%。掺加外加剂可使充填体水化反应更充分,有助于提高其强度。研究表明,细尾砂充填体强度和流动性可以满足矿山实际矿房充填的要求。

关键词: 胶结充填, 正交试验, 细尾砂, 充填配比参数, 混合充填骨料, 多元非线性回归, 微观分析

Abstract:

With the development of economy and society,the national environmental protection policy has become increasingly strict.According to the requirements of relevant departments,the mine tailings pond is facing a gradual and comprehensive withdrawal.At present,the utilization and disposal of the tailings dumped in the tailing pond has become a practical problem that has to be solved.Considering the actual situation of the mine studied,the tailings stored in the tailings pond are all fine tailings with small particle size.If used this fine tailings as filling,there are problems such as poor fluidity and low strength of filling body.The chemical composition and particle size of the tailings was determine by X-ray fluorescence spectroscopy and laser particle size analysis.Orthogonal experiments and cement filling experiments were conducted to explore the influence of tailings slurry concentration,cementitious material content,the amount of admixture,and the proportion of fine tailings on the strength and diffusion of the backfill.By using range analysis and variance analysis,the order of importance of the influence of each factor was obtained,and the recommended ratio parameters were determined through multiple regression analysis.Finally,the microstructure of the filling body was further explored through the test results and SEM analysis.The results show that the order of importance of the factors affecting the strength of the filling body is the cementing material content,slurry concentration,admixture content,and the proportion of fine tailings.The order of importance of the factors affecting the diffusion is as follows:The proportion of fine tailings,the amount of additives,the slurry concentration and the amount of cementitious materials.The control variables can obtain the strength growth law of the filling body:Increasing the slurry concentration and the amount of cementitious material can increase the strength of the filling body;Within the appropriate amount,the strength of the filling body increases with the increase of the admixture;The content of tailings will have a more complex impact on the strength of the backfill.According to the regression formula,the recommended ratio parameters for the actual ore house filling are 70% slurry concentration,20% cementitious material content,1‰ admixture content,and 30% fine tailings content.Adding admixtures can make the hydration reaction more fully,thereby increasing its strength.The results show that the strength and fluidity of the fine tailings filling body can meet the requirements of the actual chamber filling.

Key words: cemented filling, orthogonal experiment, fine tailings, filling ratio parameters, mixed filling ag-gregate, multiple nonlinear regression, microscopic analysis

中图分类号: 

  • TD853

表1

尾砂基础物理参数"

尾砂类型物理参数
湿密度/(g·cm-3干密度/(g·cm-3真密度/(g·cm-3孔隙率/%
细尾砂1.871.283.3461.68
分级尾砂2.161.933.1839.31

表2

尾砂化学成分参数"

尾砂类型化学成分w(B)/%
Al2O3SiO2Fe2O3MgOCaOK2OTiO2SZnPb
细尾砂9.1127.123.701.4022.62.190.2611.900.4300.883
分级尾砂5.6916.84.573.5165.21.490.370.910.7320.228

图1

细尾砂粒径分布"

图2

分级尾砂粒径分布"

表3

尾砂粒径参数"

尾砂类型粒径/μmCuCc
d10d50d90
细尾砂1.1315.75324.9387.700.96
分级尾砂8.39657.085274.946.152.10

表4

正交设计因素水平表"

水平因素
A/%B/%C/‰D/%
16233030
26425140
36620250
46817360
57014470

图3

试件制备及测试"

表5

充填配比试验结果"

试验序号A/%B/%C/‰D/%3 d抗压强度/MPa7 d抗压强度/MPa28 d抗压强度/MPa扩散度/cm
162330300.751.302.7443.3
262251400.500.721.5446.7
362202500.350.490.7636.1
462173600.220.330.5535.6
562144700.180.260.4531.1
664331500.851.753.4136.0
764252600.551.001.7732.3
864203700.450.681.0225.0
964174300.390.701.3049.9
1064140400.150.300.4335.3
1166332701.052.504.5332.0
1266253300.851.333.2948.8
1366204400.701.082.0443.0
1466170500.420.970.8927.3
1566141600.310.470.8122.0
1668333401.822.327.9347.0
1768254501.052.034.4039.0
1868200600.660.732.6316.5
1968171700.380.451.2718.1
2068142300.350.531.3643.6
2170334602.004.707.8536.5
2270250701.191.375.2814.0
2370201301.002.134.4531.5
2470172400.580.712.0628.3
2570143500.460.551.7221.6

表6

极差分析结果"

变量类型水平ABCD显著性大小
3 d抗压强度/MPak110.401.290.630.67B>A>C>D
k120.480.830.610.75
k130.670.630.580.63
k140.850.400.760.75
k151.050.290.860.65
R10.651.000.290.12
7 d抗压强度/MPak210.622.510.931.20B>A>C>D
k220.891.291.101.03
k231.271.021.051.16
k241.210.631.041.45
k251.890.421.751.05
R21.272.090.820.42
28 d抗压强度/MPak311.215.292.392.63B>A>C>D
k321.593.262.302.80
k332.312.182.102.24
k343.521.212.902.72
k354.270.953.212.51
R33.064.341.110.56
扩散度/cmk4138.5638.9627.2843.42D>C>A>B
k4235.7036.1630.8640.06
k4334.6230.4234.4632.00
k4432.8431.8435.6028.58
k4526.3830.7239.9024.04
R412.188.5412.6219.38

图4

不同因素不同期龄的膏体抗压强度"

表7

方差分析结果"

方差来源因素偏差平方和自由度方差F值显著水平
3 d抗压强度A1.4140.3514.96B>A>C>D
B3.1640.7933.48
C0.2940.073.07
D0.0740.020.70
7 d抗压强度A4.5741.146.57B>A>C>D
B13.5143.3819.30
C2.2440.563.10
D0.4840.120.80
28 d抗压强度A33.4248.3613.13B>A>C>D
B62.41415.6024.51
C4.2441.061.66
D0.9740.240.38
扩散度A413.794103.4511.81D>C>A>B
B283.94470.988.11
C459.404114.8513.11
D1 286.594321.6536.73

图5

不同配比试件SEM图"

Cai Gaipin,Yu Shike,Wang Jun,al et,2014.Analysis on factors affecting product size of premill based on orthogonal test[J].Mining & Processing Equipment,42(10):65-68.
Du Xianghong,Shi Caixin,Wu Jing,2016.On naphthalene water-reducer performance effects to backfilling slurry of Fankou lead-zinc mine[J].Metallurgical Collections,(3):26-30.
Fu Ziguo,Qiao Dengpan,Guo Zhonglin,al et,2018.A model for calculating strength of ultra-fine tailings cemented hydraulic fill and its application[J].Rock and Soil Mechanics,39(9):3147-3157.
Gan Deqing,Han Liang,Liu Zhiyi,al et,2017.Study on the flocculation settlement characteristics of fine-grained tailings[J].Mining Research and Development,37(9):31-35.
He Jianyuan,Yang Zhiqiang,Gao Qian,al et,2016.Analysis on particle size grading of mixed aggregate with waste rock and whole tailings and its proportion decision[J].Mining Research and Development,36(11):22-27.
Lan Wentao,Wu Aixiang,Wang Yiming,al et,2019.Optimization of filling ratio of hemihydrate phosphogypsum based on orthogonal test[J].Chinese Journal of Nonferrous Metals,29(5):1083-1091.
Li Diyuan,Sun Chengzhi,Jian Mingxing,al et,2017.Strength characteristics of cemented backfilling with phosphogypsum and mullock based on orthogonal experiment[J].Chinese Journal of Underground Space and Engineering,13(1):29-34.
Lin Zongshou,2017.Cement Technology[M].Wuhan:Wuhan University of Technology Press:147.
Liu Z,Lan M,Xiao S,al et,2015.Damage failure of cemented backfill and its reasonable match with rock mass[J].Transactions of Nonferrous Metals Society of China,25(3):954-959.
Rao Yunzhang,Shao Yajian,Xiao Guangzhe,al et,2016.Effect of polycarboxylate-based superplasticizer on performances of super fine tailings paste backfill[J].Chinese Journal of Nonferrous Metals,26(12):2647-2655.
Sheng Yuhang,Li Guangbo,Jiang Haiqiang,2020.Effects of superplasticizers and fly ash on rheological properties of cemented tailings backfill[J].Journal of Chongqing University,43(4):55-63.
Singh C B,Santosh K,2013.Underground void filling by cemented mill tailings[J].International Journal of Mining Science and Technology,23(6):893-900.
Wang J,Gao Q,Li G,al et,2018.Development of cementing material of fine full-tailings filling by slag powder[J].IOP Conference Series(Earth and Environmental Science),186(2):012062.
Wei Wei,Gao Qian,2013.Effects of water-reducers on strength of neotype whole-tailings cementing materials[J].Concrete,(5):80-82.
Wu Aixiang,Ruan Zhu’en,Wang Jiandong,al et,2019.Optimizing the flocculation behavior of ultrafine tailings by ultra-flocculation[J].Chinese Journal of Engineering,41(8):981-986.
Wu Aixiang,Yang Ying,Cheng Haiyong,al et,2018.Status and prospects of paste technology in China[J].Chinese Journal of Engineering,40(5):517-525.
Wu J Y,Jing H W,Yin Q,al et,2020.Strength and ultrasonic properties of cemented waste rock backfill considering confining pressure,dosage and particle size effects[J].Construction and Building Materials,242,118132. .
Xiao Wenfeng,Chen Jianhong,Chen Yi,al et,2019.Optimization of multi-objective filling slurry ratio based on neural network and genetic algorithm[J].Gold Science and Technology,27(4):581-588.
Xu Wenbin,Pan Weidong,Ding Minglong,2015.Experiment on evolution of microstructures and long-term strength model of cemented backfill mass[J].Journal of Central South University (Science and Technology),46(6):2333-2341.
Yang Xiao,Yang Zhiqiang,Gao Qian,al et,2016.Cemented filling strength test and optimal proportion decision of mixed filling aggregate[J].Rock and Soil Mechanics,37(Supp.2):635-641.
Zhang L M,Liu S B,Song D S,2019.Effect of the content of micro-active copper tailing on the strength and pore structure of cementitious materials[J].Materials (Basel,Switzerland),12(11):1861.
Zhang Qinli,Li Xieping,Yang Wei,2013.Optimization of filling slurry ratio in a mine based on back-propagation neural network[J].Journal of Central South University(Science and Technology),44(7):2867-2874.
Zhang Qinli,Wang Zhongwei,Rong Shuai,al et,2019.Early strength characteristics and microcosmic influence mechanism analysis of cemented filling body of full tailings in deep mine[J] .Nonferrous Metals Engineering,9(6):97-104.
蔡改贫,余世科,王俊,等,2014.基于正交试验的预磨机磨矿粒度影响因素分析[J].矿山机械,42(10):65-68.
杜向红,史采新,吴璟,2016.萘系减水剂对凡口矿尾砂充填料浆性能影响研究[J].冶金丛刊,(3):26-30.
付自国,乔登攀,郭忠林,等,2018.超细尾砂胶结充填体强度计算模型及应用[J].岩土力学,39(9):3147-3156.
甘德清,韩亮,刘志义,等,2017.细粒级尾砂絮凝沉降特性研究[J].矿业研究与开发,37(9):31-35.
何建元,杨志强,高谦,等,2016.废石全尾砂混合骨料粒径级配分析与配比决策[J].矿业研究与开发,36(11):22-27.
兰文涛,吴爱祥,王贻明,等,2019.基于正交试验的半水磷石膏充填配比优化[J].中国有色金属学报,29(5):1083-1091.
李地元,孙成志,蹇明星,等,2017.磷石膏废石胶结充填体强度特性正交试验研究[J].地下空间与工程学报,13(1):29-34.
林宗寿,2017.水泥工艺学[M]. 武汉:武汉理工大学出版社:147.
饶运章,邵亚建,肖广哲,等,2016.聚羧酸减水剂对超细全尾砂膏体性能的影响[J].中国有色金属学报,26(12):2647-2655.
盛宇航,李广波,姜海强,2020.减水剂与粉煤灰对全尾砂胶结充填料浆流变性能的影响[J].重庆大学学报,43(4):55-63.
魏微,高谦,2013.减水剂对全尾砂新型胶凝材料强度的影响[J].混凝土,(5):80-82.
吴爱祥,阮竹恩,王建栋,等,2019.基于超级絮凝的超细尾砂絮凝行为优化[J].工程科学学报,41(8):981-986.
吴爱祥,杨莹,程海勇,等,2018.中国膏体技术发展现状与趋势[J].工程科学学报,40(5):517-525.
肖文丰,陈建宏,陈毅,等,2019.基于神经网络与遗传算法的多目标充填料浆配比优化[J].黄金科学技术,27(4):581-588.
徐文彬,潘卫东,丁明龙,2015.胶结充填体内部微观结构演化及其长期强度模型试验[J].中南大学学报(自然科学版),46(6):2333-2341.
杨啸,杨志强,高谦,等,2016.混合充填骨料胶结充填强度试验与最优配比决策研究[J].岩土力学,37(增2):635-641.
张钦礼,李谢平,杨伟,2013.基于BP网络的某矿山充填料浆配比优化[J].中南大学学报(自然科学版),44(7):2867-2874.
张钦礼,王钟苇,荣帅,等,2019,深井矿山全尾砂胶结充填体早期强度特性及微观影响机理分析[J].有色金属工程,9(6):97-104.
[1] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[2] 张雷, 郭利杰, 李文臣. 基于铜镍冶炼渣制备充填胶凝材料试验研究[J]. 黄金科学技术, 2020, 28(5): 669-677.
[3] 宋春辉, 李祥龙, 王建国, 宋飞. 矿柱爆破回采对胶结充填体损伤影响试验研究[J]. 黄金科学技术, 2020, 28(4): 558-564.
[4] 黄照东,张德明,刘一锴,张钦礼,王浩. 柠檬酸浸法预处理对磷石膏充填体性能的影响[J]. 黄金科学技术, 2020, 28(1): 97-104.
[5] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[6] 梁昌金, 马传净. 碘—氨浸出体系用于废旧印刷线路板中金的浸取[J]. 黄金科学技术, 2019, 27(5): 784-790.
[7] 徐文峰,饶运章,李尚辉,许威. 含膨润土充填料浆泌水特性分析[J]. 黄金科学技术, 2019, 27(3): 433-439.
[8] 叶永飞,张雅楠,李士超,曹世荣,韩建文,王晓军. 循环载荷下胶结充填体损伤声发射表征[J]. 黄金科学技术, 2018, 26(6): 819-825.
[9] 蓝志鹏,王新民,张钦礼,陈秋松. 磁化水对膏体料浆管道输送摩阻损失影响试验研究[J]. 黄金科学技术, 2018, 26(6): 811-818.
[10] 李夕兵,刘冰. 硬岩矿山充填开采现状评述与探索[J]. 黄金科学技术, 2018, 26(4): 492-502.
[11] 李文臣,郭利杰,陈鑫政,李宗楠,李欣. 尾砂胶结充填体三维空间强度分布相似模拟试验研究[J]. 黄金科学技术, 2018, 26(4): 528-534.
[12] 王新民, 赵茂阳, 荣帅, 王浩, 张云海. APAM对全尾砂胶结充填体早期强度影响研究[J]. 黄金科学技术, 2018, 26(3): 305-311.
[13] 曹世荣,韩建文,李永欣,王晓军 *,冯萧,卓毓龙. 基于声发射概率密度函数固废胶结充填体损伤分析[J]. 黄金科学技术, 2017, 25(6): 92-98.
[14] 曹世荣,肖伟晶,李永欣,王晓军,卓毓龙,冯萧. 循环载荷下块石胶结充填体声发射特性研究[J]. 黄金科学技术, 2017, 25(3): 92-97.
[15] 王新民,胡一波,王石,刘吉祥,陈宇,卞继伟. 超细全尾砂充填配比优化正交试验研究[J]. 黄金科学技术, 2015, 23(3): 45-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!