img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (2): 296-305.doi: 10.11872/j.issn.1005-2518.2021.02.153

• 采选技术与矿山管理 • 上一篇    

基于自适应网格划分的复杂矿体投影轮廓线自动生成方法

李广斌1(),李安平1,徐刚强2   

  1. 1.乌拉特后旗紫金矿业有限公司,内蒙古 乌拉特后旗 015500
    2.长沙迪迈数码科技股份有限公司,湖南 长沙 410083
  • 收稿日期:2020-09-07 修回日期:2020-11-10 出版日期:2021-04-30 发布日期:2021-05-28
  • 作者简介:李广斌(1990-),男,江西德兴人,工程师,从事采矿技术及数字矿山建设管理工作。897229494@qq.com

Automatic Generation Method of Complex Orebody Projection Contour Based on Adaptive Mesh Generation

Guangbin LI1(),Anping LI1,Gangqiang XU2   

  1. 1.Wulatehouqi Zijin Mining Co. ,Ltd. ,Wulatehouqi 015500,Inner Mongolia,China
    2.Changsha Digital Mine Co. ,Ltd. ,Changsha 410083,Hunan,China
  • Received:2020-09-07 Revised:2020-11-10 Online:2021-04-30 Published:2021-05-28

摘要:

为解决复杂矿体投影轮廓线生成计算量大、速度慢等问题,提出一种基于网格划分的矿体投影轮廓线自动生成方法,将构成矿体模型的三角网格降维投影,生成二维三角形面片集;采用自适用规则网格划分投影区域,将三角形面片数据存储至网格单元中并建立索引关系;采用邻接单元搜索方法将网格单元进行分类,并用单元的边界矩形代替内部单元中的三角形面片参与运算;对跨越了多个网格单元的三角形面片,将其划分至与之相交的三角形面片所在的边界单元中,有利于减少冗余计算;最后布尔运算递归求并,得到投影轮廓线。研究结果表明:该方法提高了筛除效率和求解速度,收敛稳定,速度较快,投影轮廓线精度较高,能够满足矿山实际工程需求及应用,已在DIMINE数字采矿软件中得到应用。

关键词: 复杂矿体, 投影轮廓线, 网格划分, 布尔运算, 单元分类, 搜索因子

Abstract:

The projection contour line of orebody is the basis of mine engineering layout and mining design. It is often used in business scenarios such as orebody structure analysis,model reconstruction,mine development design,mining plan formulation,etc.. Especially for model reconstruction,the accuracy of orebody contour directly affects the accuracy of reconstructed orebody model,and then affects the refined management of ore reserves and mining design. Therefore,it is of great significance to study the projection contour of orebody for the management of mine resources and reserves and production design.In order to solve the problems of complex orebody projection contour line generation,such as large amount of calculation and slow speed,an automatic generation method of complex orebody projection contours based on grid partition was proposed. The triangle mesh that constitutes the orebody model is projected to the designated plane by reducing the dimension to generate two-dimensional triangular patch set.Using self-adaptive rules to divide the grid into projection region,the triangular patches are stored in the corresponding grid cells,and the quad-tree method is used to establish the index relationship between triangular patches and the grid,and establish a two-dimensional index to the grid cells’ rows and columns. The grid unit is divided by using the method of adjacent element search,and the boundary rectangle of the element is used instead of the triangular surface of the internal element to participate in the operation. For triangular sheets spanning multiple grid elements in boundary elements,it is divided into boundary elements where triangular facets intersect with each other to reduce redundancy calculation. Finally,the projection contours is obtained by merging the set of recursive Boolean operations in the form of grid elements.In the research process,the CGAL:join algorithm was selected to conduct comparative experiments with this algorithm,and the number of triangles removed and the speed of solution were analyzed. CGAL:join algorithm does not screen the number of internal triangular patches,but this algorithm deals with the internal triangular patches,and the larger the search factor M,the less triangles are removed. Because CGAL:join algorithm does not filter out the internal triangular patches,the time consumption of CGAL:join algorithm is generally longer than that of this algorithm.With the increase of the number of patches,the time difference is more obvious.In this algorithm,the larger the search factor M,the more time-consuming,but the difference is small.The results show that the method improves the screening efficiency and solving speed,its convergence is stable,the speed is fast,and the projection contour line precision is high,which can meet the actual engineering requirements and application of mine,and has been applied in DIMINE digital mining software.

Key words: complex ore body, projection contour, grid division, Boolean operation, unit classification, search factor

中图分类号: 

  • TD17

图1

算法流程图"

图2

矿体模型及其网格划分"

图3

M=1、2时所搜索的区域"

图4

网格单元分类的流程图"

图5

清理冗余三角形面片注:U1、U2、U3为边界单元,Z1为任意边界单元;A、B和C为交点"

图6

不同M值对应的投影轮廓线"

图7

各方法的复杂矿体投影轮廓线"

图8

不同孔洞与网格尺寸比值下的投影轮廓线"

图9

不同数量的三角形面片模型"

表1

不同三角形面片数量下三角形面片的筛除个数"

方法种类筛除数量/个
10 00050 000100 000200 000500 0001 000 000

本文算法(M=1)

本文算法(M=2)

本文算法(M=3)

CGAL:join算法

8 233

6 519

5 093

0

44 587

41 342

38 567

0

84 323

77 653

73 872

0

178 632

174 328

168 943

0

430 432

421 098

410 943

0

923 242

902 134

889 321

0

表2

不同三角形面片数量下投影轮廓线求解速度"

方法种类求解速度/s
10 0005 0000100 000200 000500 0001 000 000

本文算法(M=1)

本文算法(M=2)

本文算法(M=3)

CGAL:join算法

0.16

0.34

0.57

0.87

0.63

0.80

1.06

6.56

1.34

1.67

2.33

14.33

2.18

2.34

2.89

45.45

10.79

12.18

13.55

167.42

12.32

14.21

16.54

600.66

图10

算法的效率对比"

Chen Zhen,Tang Jun,Liao Huanyu,al et,2016.A method for obtaining the intersections in triangular mesh model based on the surface equation[J].Geomatics and Spatial Information Technology,39(3):62-64.
Hou Zhigang,2020.Research and application of 3D geological modeling of Erma iron deposit in Qian’an Hebei Province [J].Modern Mining,36(6):58-60,64.
Huang Zhi,Zhang Zhelun,Zhang Feng,al et,2014.Union algorithm for polygon set based on multi-level grid[J].Journal of Zhejiang University (Science Edition),41(1):108-112.
Jia Xiaoyan,Xie Xiaohua,Sun Bei,2011.A fast method for extracting the visible contour of triangular meshes [C/OL]//The 30th China Control Conference.Yantai:China Automatic Chemical Control Theory Committee.
Jiang Xiaoqin,Yan Haowen,Wang Zhonghui,2015.An algorithm for difference of two arbitrary polygons[J].Surveying and Spatial Geographic Information,38(9):66-68,71.
Jiang Xudong,Sheng Bin,Ma Lizhuang,al et,2016.Optimization of set operations on triangulated polyhedrons using adaptive lazy splitting[J].Journal of Software,27(10):2473-2487.
Jing Yongbin,Wang Gongzhong,Sun Guangzhong,2016.3D reconstruction of complex ore-body model based on 2D contours [J].Metal Mine,(11):124-127.
Lai Guangling,Tong Xiaochong,Ding Lu,2018.Multiscale integer coding and data index of 3D spatial grid[J].Journal of Geodesy and Geoinformation Science,47(7):1007-1017.
Li Dan,Xiong Xiaojun,Zhang Wencan,al et,2013.Research on 3D modeling method of complex ore body[J].Science and Technology Innovation Herald,(22):75-76.
Li Ning,Tian Zhen,Zhang Lihua,al et,2013.Optimization algorithm for triangular mesh surface intersection[J].Journal of Liaoning Technical University (Natural Science),32(9):1269-1273.
Ruan Menggui,Zhang Yujin,2010.A fast algorithm for Boolean operations on arbitrary polygons [C]//Proceddings of the 15th National Conference on Image and Graphics. Beijing:Tsinghua University Press.
Shi Yongfeng,Zhang Yuhao,Cheng Ting,al et,2019.Surface segmentation algorithm based on spatial polygon triangulation [J].Journal of Graphics,40(3):447-451.
Tan Zhenghua,Tan Jiaoyue,Pan Mei,al et,2017.A method for high quality orebody surface 3D reconstruction based on space contours [J].Gold Science and Technology,25(2):96-103.
Wang Huiqing,Chong Suwen,2016.A high efficient polygon clipping algorithm for dealing with intersection degradation [J].Journal of Southeast University (Natural Science Edition),46(4):702-707.
Wu Fukun,Xiao Li,Wang Huawei,2019.A complex geometric surface extracting method for large-scale volumetric data [J].Journal of Computer-Aided Design & Computer Graphics,31(11):1908-1916.
Xu Jinghua,Sheng Hongsheng,Zhang Shuyou,al et,2018.A method of constructing layered multi-connected domains for manifold mesh model based on adjacency topology[J].Journal of Computer-Aided Design & Computer Graphics,30(1):180-190.
Yang Yang,Liu Xuejun,Xiao Fei,2016.Quickly fusion algorithm of complex polygons and its implementation[J].Geospatial Information,14(3):52-55,8.
Yao Xiao,Qiu Qiang,Xiao Zhuojian,al et,2018.Research on vector polygon intersection algorithm in spark framework [J].Chinese High Technology Letters,28(6):500-507.
Zhang Huaxin,Liu Nan,Liu Renyi,2011.Cascaded union algorithm for polygon set based on grid[J].Computer Engineering, 37(6):38-40.
Zhong D Y,Wang L G,Bi L,2019.Implicit modeling of complex ore body with constraints of geological rules[J].Transactions of Nonferrous Metals Society of China,(11):2392-2399.
陈振,汤军,廖环宇,等,2016.基于曲面方程的三角形网格模型求交方法[J].测绘与空间地理信息,39(3):62-64.
侯志刚,2020.河北迁安二马铁矿床三维地质建模研究及应用[J].现代矿业,36(6):58-60,64.
黄志,张哲伦,张丰,等,2014.基于多级格网的多边形集合求并算法研究[J].浙江大学学报(理学版),41(1):108-112.
贾晓彦,解小华,孙备,2011.三角网格曲面可视轮廓提取的快速算法[C/OL]//第三十届中国控制会议.烟台:中国自动化学控制理论专业委员会.
姜晓琴,闫浩文,王中辉,2015.一种任意简单多边形求差算法[J].测绘与空间地理信息,38(9):66-68,71.
姜旭东,盛斌,马利庄,等,2016.基于自适应延迟切割的三角网格布尔运算优化[J].软件学报,27(10):2473-2487.
荆永滨,王公忠,孙光中,2016.复杂矿体三维模型二维轮廓线重建方法[J].金属矿山,(11):124-127.
赖广陵,童晓冲,丁璐,等,2018.三维空间格网的多尺度整数编码与数据索引方法[J].测绘学报,47(7):1007-1017.
李丹,熊晓军,张文璨,等,2013.复杂矿体的三维建模方法研究[J].科技创新导报,(22):75-76.
李宁,田震,张立华,等,2013.优化的三角网格曲面求交算法[J].辽宁工程技术大学学报(自然科学版),32(9):1269-1273.
阮孟贵,章毓晋,2010.任意多边形布尔运算的快速算法[C]//第十五届全国图像图形学学术会议论文集.北京:清华大学出版社.
史永丰,张育浩,程婷,等,2019.基于空间多边形三角剖分的曲面分割求交算法[J].图学学报,40(3):447-451.
谭正华,谭皎月,潘梅,等,2017.基于空间轮廓线的高质量矿体表面三维重构方法[J].黄金科学技术,25(2):96-103.
王慧青,崇素文,2016.一种处理交点退化现象的高效多边形裁剪算法[J].东南大学学报(自然科学版),46(4):702-707.
吴付坤,肖丽,王华维,2019.面向大规模体数据集的复杂几何曲面抽取方法[J].计算机辅助设计与图形学学报,31(11):1908-1916.
徐敬华,盛红升,张树有,等,2018.基于邻接拓扑的流形网格模型层切多连通域构建方法[J].计算机辅助设计与图形学学报,30(1):180-190.
杨洋,刘学军,肖斐,2016.复杂多边形快速融合算法与实现[J].地理空间信息,14(3):52-55,8.
姚晓,邱强,肖茁建,等,2018.Spark框架下矢量多边形求交算法研究[J].高技术通讯,28(6):500-507.
张华鑫,刘南,刘仁义,2011.基于格网的多边形集合级联求并算法[J].计算机工程,37(6):38-40.
[1] 孙书彬,吴洋,姜新吉,张瑞忠. 基于3D CAD MineStar软件的胶东大尹格庄金矿三维数字实体模型的建立[J]. 黄金科学技术, 2015, 23(2): 63-67.
[2] 叶培. 一种新的量子遗传算法在阳山金矿GPS卫星信号去噪处理中的应用探讨[J]. 黄金科学技术, 2015, 23(2): 83-87.
[3] 叶培. EGM2008地球重力场模型在北金山矿区高程控制测量中的应用[J]. 黄金科学技术, 2014, 22(1): 69-73.
[4] 曲相屹. 倾斜巷道腰线标定与伪倾角改正[J]. 黄金科学技术, 2013, 21(2): 73-76.
[5] 隋洪杰,张一鹏,杨晋升. 山东金翅岭金矿井巷贯通测量误差分析及方案选择[J]. 黄金科学技术, 2012, 20(6): 82-84.
[6] 王晖. 提高罗盘仪导线测量精度的探讨[J]. J4, 2009, 17(4): 47-49.
[7] 姚汉球. 河台金矿区+160 1TI主运输平硐贯通施工测量实践[J]. J4, 2008, 16(3): 54-56.
[8] 曹旭,陈学坤. 矿山中GPS测量技术的应用[J]. J4, 2007, 15(6): 47-51.
[9] 江明阳. 河台金矿高村矿床11号主矿体资源储量变化分析[J]. J4, 2007, 15(4): 28-31.
[10] 陈安斌. 矿区独立坐标系的建立方法[J]. J4, 2007, 15(2): 49-52.
[11] 徐静, 胡乃联. Surpac 软件在某金铜矿山的应用研究[J]. J4, 2007, 15(1): 54-58.
[12] 温世庆. AutoCAD 在矿山测量中的应用[J]. J4, 2004, 12(3): 15-17.
[13] 卢会军. AutoCAD 在矿山地质工作中的应用[J]. J4, 2004, 12(1): 44-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!