img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (2): 245-255.doi: 10.11872/j.issn.1005-2518.2021.02.072

• 采选技术与矿山管理 • 上一篇    

基于KPCA-IPSO-LSSVM的充填管道磨损风险预测

骆正山(),黄仁惠(),申国臣   

  1. 西安建筑科技大学,陕西 西安 710055
  • 收稿日期:2020-04-09 修回日期:2021-01-30 出版日期:2021-04-30 发布日期:2021-05-28
  • 通讯作者: 黄仁惠 E-mail:345303297@qq.com;1076152068@qq.com
  • 作者简介:骆正山(1969-),男,陕西西安人,教授,从事管道腐蚀、磨损、风险评估与建模研究工作。345303297@qq.com
  • 基金资助:
    中国黄金集团公司课题项目“西藏华泰龙矿业开发有限公司尾矿输送管道安全检测系统”(2040217137)

Research on Wear Risk Prediction of Filling Pipeline Based on KPCA-IPSO-LSSVM

Zhengshan LUO(),Renhui HUANG(),Guochen SHEN   

  1. Xi’an University of Architecture and Technology,Xi’an 710055,Shaanxi,China
  • Received:2020-04-09 Revised:2021-01-30 Online:2021-04-30 Published:2021-05-28
  • Contact: Renhui HUANG E-mail:345303297@qq.com;1076152068@qq.com

摘要:

为克服传统预测模型存在的适用性差、预测精度不足和参数选取随意性强等缺陷,提出了一种将核主成分分析法(KPCA)、改进粒子群算法(IPSO)与最小二乘支持向量机(LSSVM)相结合的充填管道磨损风险预测新方法。通过KPCA对管道磨损影响因素进行特征提取,将提取结果作为LSSVM的输入,同时利用具有较强全局搜索能力的IPSO算法对模型参数进行优化,构建KPCA-IPSO-LSSVM组合预测模型。以黄陵县矿区的80组实测数据为例,对该模型进行训练和预测,并将其预测结果与IPSO-LSSVM模型、LSSVM模型、SVM模型的预测结果进行对比分析。结果表明:与其他3个预测模型相比,KPCA-IPSO-LSSVM模型具有较高的预测精度和较强的泛化能力,为充填管道磨损风险预测提供了一种更为有效的预测方法。

关键词: 核主成分分析, 改进粒子群算法, 最小二乘支持向量机, 充填管道, 磨损风险, 组合预测模型

Abstract:

Filling pipeline wear system is a typical high-dimensional,nonlinear,strong coupling and multi-time-varying complex system.It is difficult to accurately predict the wear situation using traditional prediction methods.In order to overcome the poor applicability and insufficient prediction accuracy of traditional prediction models,and the defect of strong randomness in parameter selection and so on,this paper proposed a new method for predicting the wear risk of filling pipeline by combining the kernel principal component analysis (KPCA),improved particle swarm optimization (IPSO) and least squares support vector machine (LSSVM).A comprehensive selection of 12 main influencing factors was used to establish the prediction index of wear risk of the filling pipeline.The KPCA method was used for feature extraction and dimensionality reduction of the influencing factors of the filling pipeline to eliminate redundant information between the data,so as to reduce the correlation between sample data and modeling accuracy impact.Established the corresponding LSSVM prediction model based on the dimensionality-reduced data,and used the IPSO algorithm with strong global search capability to optimize the model parameters to avoid the blindness of artificial parameter selection,thereby improving the model prediction accuracy and establishing KPCA-IPSO-LSSVM combined prediction model.Taking the filling system of Huangling County mining area as an example,combining the 80 sets of sample data measured in the field,MATLAB was used to train and predict the built model,and the prediction results were compared with the prediction results of the IPSO-LSSVM model,LSSVM model,and SVM model.For comparison,multi-error indicators were used to comprehensively analyze the prediction results of the four models.The research results show that the predicted value of the constructed model is basically consistent with the actual value curve.The KPCA method can effectively reduce the redundant information between the data.On the basis of retaining the original sample information to the maximum,five principal components containing 86.97% of the original information are extracted,it simplifies the calculation structure of the model.The prediction accuracy of the adopted IPSO-LSSVM model is 6.79%,the average relative error is 1.95%,and the judgment coefficient is 99.55%.Compared with other prediction models,the prediction model based on KPCA-IPSO-LSSVM has higher prediction accuracy and stronger generalization ability,which provides a more effective prediction method for the prediction of the wear risk of the filling pipeline,and provides a guiding basis for ensuring the smooth progress of the filling operation and the safe production of the mine.

Key words: kernel principal component analysis, improved particle swarm algorithm, least squares support vector machine, filling pipeline, wear risk, combined prediction model

中图分类号: 

  • TD853.34

图1

核主成分分析法原理"

图2

预测模型结构图"

图3

KPCA-IPSO-LSSVM算法充填管道磨损风险预测流程图"

图4

充填管道磨损风险评估指标体系"

表1

充填管道磨损风险评估定性指标赋值准则(王恩杰等,2018)"

赋值浆料腐蚀性充填骨料形状管道的耐磨性管线变化程度管道安装质量
[0,2)偏酸或偏碱性,含易腐蚀管道的物质表面锋利的极不规则形极差布置极复杂、弯管极多极差
[2,4)弱酸或弱碱性,含轻微腐蚀管道的物质表面钝化的多菱角形布置复杂、弯管多
[4,6)pH值偶尔变化引起的管道腐蚀基本光滑的多边形、椭球型布置简单、弯管少
[6,8)中性且基本不会发生化学腐蚀表面较光滑的球形极好布置极简单、弯管极少极好

表2

充填管道磨损风险原始样本数据"

样本C1/(t·m-3C2/mmC3C4C5/mmC6C7/mmC8C9C10C11C12/%等级
11.970.621.24.5143.11521.832.94.13.24.6
21.760.086.83.8204.81792.524.85.32.31.25
??????????????
731.780.054.45205.61481.664.75.25.21.58
741.780.622.13.2183.11681.84.22.83.21.5
751.690.083.54.8226.21453.29.65.14.20.91
761.830.527.46.3287.7691.56.74.97.51.65
771.920.114.84.4244.8983.55.85.45.51.19
781.920.066.94.2265.61043.33.85.64.71.01
791.710.054.46.1287.2721.73.57.56.82.67
801.680.284.24.6205.5781.65.25.95.51.18

表3

各因素标准化数据"

样本C1/(t·m-3C2/mmC3C4C5/mmC6C7/mmC8C9C10C11C12/%等级
11.571.48-1.82-0.47-1.57-1.600.90-0.49-1.05-0.93-1.302.41
2-0.44-0.731.00-1.04-0.35-0.551.540.37-0.090.03-1.88-0.42
??????????????
73-0.25-0.85-0.21-0.07-0.35-0.060.80-0.70-0.14-0.050.01-0.14
74-0.251.48-1.37-1.52-0.75-1.601.28-0.52-0.39-1.98-1.30-0.21
75-1.11-0.73-0.66-0.230.060.320.731.222.32-0.13-0.64-0.70
760.231.071.300.991.281.24-1.09-0.900.86-0.291.51-0.08
771.09-0.61-0.01-0.550.47-0.55-0.391.590.410.110.21-0.47
781.09-0.811.05-0.710.88-0.06-0.251.34-0.600.27-0.32-0.62
79-0.92-0.85-0.210.831.280.94-1.01-0.65-0.751.801.050.78
80-1.200.09-0.31-0.39-0.35-0.12-0.87-0.770.110.510.21-0.48

表4

核主成分分析结果"

主成分特征值贡献率/%累计贡献率/%
11.77540.2240.22
20.85419.3559.56
30.50311.3970.96
40.3678.3179.27
50.3407.7186.97
60.2024.5791.55

表5

投影特征向量"

影响因素F1F2F3F4F5
C1-0.8700.2150.0520.0050.031
C2-0.155-0.3780.052-0.029-0.084
C3-0.5830.342-0.341-0.003-0.089
C4-0.8710.0340.273-0.0470.058
C50.198-0.282-0.113-0.2660.024
C60.6610.1840.060-0.055-0.038
C7-0.008-0.261-0.1340.0820.159
C80.140-0.207-0.0840.1670.107
C90.5700.2260.0700.096-0.026
C100.295-0.0350.0270.022-0.151
C110.020-0.1770.0790.094-0.126
C120.6030.3370.058-0.0660.136

表6

降维后的数据"

样本编号F1F2F3F4F5等级
1-1.0410.5690.396-0.067-0.578
2-1.822-0.024-0.995-0.3350.043
???????
73-0.7480.300-0.320.210-0.111
74-0.5171.644-0.352-0.421-0.160
751.1460.614-0.574-0.6190.213
761.0760.0050.6140.4890.424
77-0.8180.0310.262-0.5630.253
78-2.406-0.6650.045-0.4330.236
790.253-0.7600.3330.630-0.430
802.0530.1750.1080.150-0.115

图5

最佳适应度曲线"

图6

KPCA-IPSO-LSSVM模型预测值与实际值比较"

图7

3种模型预测值与实际值比较"

图8

4种预测模型的绝对误差对比图"

表7

各预测模型主要误差指标"

预测模型RMSEMRE/%R2/%
SVM0.454116.1590.46
LSSVM0.24839.1095.54
IPSO-LSSVM0.18166.7697.26
KPCA-IPSO-LSSVM0.06791.9599.55
Batista V R,Zampirolli F A,2019.Optimising robotic pool-cleaning with a genetic algorithm[J].Journal of Intelligent & Robotic Systems,95(2):443-458.
Chen Yong,Li Peng,Zhang Zhongjun,al et,2019.Online prediction model for power transmission line icing load based on PCA-GA-LSSVM[J].Power System Protection and Control,47(10):110-119.
Feng Ju’en,Wu Chao,2005.Fuzzy comprehensive evaluation on probability failure criteria of the deep level pipelines filling system[J].Journal of Central South University(Natural Science Edition),(6):1079-1083.
Feng Yunfei,Meng Fanbo,Zhu Fubin,al et,2013.Risk assessment of long-distance pipeline based on gray analytic hierarchy method[J].Gas Storage and Transportation,32(12):1289-1294.
Guo Jiang,Zhang Bixiao,2015.Invalidation risk evaluation of backfill pipe based on PCA and BP neural network[J].Gold Science and Technology,23(5):66-71.
Huang Xiaolu,Zhou Xiangzhen,2019.A fault diagnosis method based on support vector machine optimized by improved fruit fly optimization algorithm[J].Journal of Mechanical Strength,41(3):568-574.
Kennedy J,2011.Particle swarm optimization[C]//Encyclopedia of Machine Learning.Boston:Springer..
Lahdhiri H, Taouali O,2021.Reduced Rank KPCA based on GLRT chart for sensor fault detection in nonlinear chemical process[J].Measurement,169:108342. doi.org/10.1016/j.measurement.2020.108342.
Li Xiaochen,Nie Xingxin,2019.KPCA-PSO-GRNN evaluation model and application of filling pipeline wear risk[J].Nonferrous Metal Engineering,9(2):84-92.
Liu Mingqiang,Li Yingpan,Chen Xiao,al et,2018.Prediction of safety-civilized measure cost for fabricated building project based on RA-LSSSVM[J].China Safety Science Journal,28(1):149-154.
Luo Zhengshan,Wang Wenhui,Zhang Xinsheng,2019.Study on failure risk of backfill pipeline based on RS-GWO-GRNN[J].Nonferrous Metal Engineering,9(6):76-83.
Pengfei Lü,Chen Xuehua,2017.PSO optimized LSSVM model by predicting the convergence between the roof and the floor in the gateways[J].Journal of Safety and Environment,17(6):2045-2049.
Mao Zhiyong,Huang Chunjuan,Lu Shichang,al et,2018.KPCA-MPSO-ELM based model for discrimination of mine water inrush source[J].China Safety Science Journal,28(8):111-116.
Nabipour N,Qasem S N, Salwana E,al et,2020.Evolving LSSVM and ELM models to predict solubility of non-hydrocarbon gases in aqueous electrolyte systems[J].Measurement,164:107999. doi.org/10.1016/j.measurement.2020.107999.
Shen G C,Jia W Y,2014.The prediction model of financial crisis based on the combination of principle component analysis and support vector machine[J].Open Journal of Social Sciences,2:204-212.
Suykens J A K,Vandewalle J,1999. Least squares support vector machine classifiers[J].Neural Processing Letters,9(3): 293-300.
Wang Enjie,Zhao Guoyan,Wu Hao,al et,2018.Weight-variation-fuzzy model for assessing wear risk of backfilling pipeline and its application[J].China Safety Science Journal,28(3):149-154.
Wang Sheng,Yang Xinfeng,2019.Short-term passenger flow forecasting of public transport based on EEMD-GWO-LSSVM [J].Computer Engineering and Applications,55(20):216-221,239.
Wang Xinmin,Wang Shi,Yan Debo,al et,2012.Risk assessment on blocking of filling pipeline based on uncertainty measure theory[J].China Safety Science Journal,22(4):151-156.
Yang Lei,Zhang Baofeng,Zhu Junchao,al et,2018.Temperature prediction method of greenhouse based on PCA-PSO-LSSVM[J].Transducer and Microsystem Technologies,37(7):52-55.
Zhang Deming,2012.A Study on Wear Mechanism and the Reliability Evaluation System for Backfilling Pipelines in Deep Mine[D].Changsha:Central South University.
Zhang Qinli,Wang Jing,Wang Xinmin,2017.Risk assessment model for filling pipeline based on KPCA and PSO-SVM[J].Gold Science and Technology,25(3):70-76.
Zhang Wansheng,2018.Research of railway monthly passenger volume forecast model based on PCA-IPSO-GNN model[J].China Public Safety(Academic Edition),(2):122-127.
陈勇,李鹏,张忠军,等,2019.基于PCA-GA-LSSVM的输电线路覆冰负荷在线预测模型[J].电力系统保护与控制,47(10):110-119.
冯巨恩,吴超,2005.深井充填管道失效概率准则的模糊综合评判[J].中南大学学报(自然科学版),(6):1079-1083.
冯云飞,孟繁博,朱富斌,等,2013.基于灰色层次分析法的长输管道风险评价[J].油气储运,32(12):1289-1294.
过江,张碧肖,2015.基于PCA与BP神经网络的充填管道失效风险评估[J].黄金科学技术,23(5):66-71.
黄晓璐,周湘贞,2019.基于改进果蝇优化算法优化支持向量机的故障诊断[J].机械强度,41(3):568-574.
李晓晨,聂兴信,2019.充填管道磨损风险的KPCA-PSO-GRNN评估模型及应用[J].有色金属工程,9(2):84-92.
刘名强,李英攀,陈晓,等,2018.装配式建筑安全文明施工费RS-LSSVM预测方法[J].中国安全科学学报,28(1):149-154.
骆正山,王文辉,张新生,2019.基于RS-GWO-GRNN的充填管道失效风险研究[J].有色金属工程,9(6):76-83.
吕鹏飞,陈学华,2017.基于PSO优化LSSVM模型的回采巷道顶底板移近量预测[J].安全与环境学报,17(6):2045-2049
毛志勇,黄春娟,路世昌,等,2018.基于KPCA-MPSO-ELM的矿井突水水源判别模型[J].中国安全科学学报,28(8):111-116.
王恩杰,赵国彦,吴浩,等,2018.充填管道磨损变权—模糊风险评估模型[J].中国安全科学学报,28(3):149-154.
王盛,杨信丰,2019.基于EEMD-GWO-LSSVM的公共交通短期客流预测[J].计算机工程与应用,55(20):216-221,239.
王新民,王石,鄢德波,等,2012.基于未确知测度理论的充填管道堵塞风险性评价[J].中国安全科学学报,22(4):151-156.
杨雷,张宝峰,朱均超,等,2018.基于PCA-PSO-LSSVM的温室大棚温度预测方法[J].传感器与微系统,37(7):52-55.
张德明,2012.深井充填管道磨损机理及可靠性评价体系研究[D].长沙:中南大学.
张钦礼,王兢,王新民,2017.基于核主成分分析与PSO-SVM的充填管道失效风险性分级评价模型[J].黄金科学技术,25(3):70-76.
张万胜,2018.基于PCA-IPSO-GNN模型的铁路月度客运量预测模型研究[J].中国公共安全(学术版),(2):122-127.
[1] 许瑞, 侯奎奎, 王玺, 刘兴全, 李夕兵. 基于核主成分分析与SVM的岩爆烈度组合预测模型[J]. 黄金科学技术, 2020, 28(4): 575-584.
[2] 王石,汤艺,冯萧. 基于改进PCA与有序多分类Logistic的充填管道磨损风险评估[J]. 黄金科学技术, 2019, 27(5): 740-746.
[3] 张钦礼,王兢*,王新民. 基于核主成分分析与PSO-SVM的充填管道失效风险性分级评价模型[J]. 黄金科学技术, 2017, 25(3): 70-76.
[4] 过江,张碧肖. 基于PCA与BP神经网络的充填管道失效风险评估[J]. 黄金科学技术, 2015, 23(5): 66-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!