img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (1): 43-52.doi: 10.11872/j.issn.1005-2518.2021.01.165

• 智慧矿山专栏 • 上一篇    下一篇

露天矿电铲铲装移动轨迹规划研究

公凡波1,2(),毕林1,2()   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.中南大学数字矿山研究中心,湖南 长沙 410083
  • 收稿日期:2020-09-16 修回日期:2021-01-19 出版日期:2021-02-28 发布日期:2021-03-22
  • 通讯作者: 毕林 E-mail:fanbo_gong@163.com;Mr.BiLin@163.com
  • 作者简介:公凡波(1995-),男,安徽宿州人,硕士研究生,从事数字矿山方面的研究工作。fanbo_gong@163.com
  • 基金资助:
    国家自然科学基金项目“基于深度学习和距离场的复杂金属矿体三维建模技术研究”(41572317);国家重点研发计划项目“基于大数据的金属矿开采装备智能管控技术研发与示范”(2019YFC0605300)

Research on Trajectory Planning of Electric Shovel in Open-pit Mine

Fanbo GONG1,2(),Lin BI1,2()   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Digital Mine Research Center,Central South University,Changsha 410083,Hunan,China
  • Received:2020-09-16 Revised:2021-01-19 Online:2021-02-28 Published:2021-03-22
  • Contact: Lin BI E-mail:fanbo_gong@163.com;Mr.BiLin@163.com

摘要:

自主铲装技术是未来露天矿智能开采的核心环节之一。为提高电铲在自主铲装过程中的工作效率,提出了一种电铲铲装移动路线的优化方法。在已知电铲工作区域的基础上,基于贪婪算法规划出电铲移动次数最少的作业位置集;在给定起始挖掘点的基础上,使用遗传算法生成电铲铲装移动最短路径,并规划每个位置对应的挖掘区域;最后结合电铲作业的相关几何约束,进一步优化电铲移动路径并调整相应挖掘区域规划,形成最终的电铲作业最优轨迹。试验结果表明,生成的电铲移动路径总距离短,挖掘区域规划符合实际生产要求,该研究结果可为自主铲装电铲的移动轨迹规划提供指导。

关键词: 露天矿, 电铲, 铲装作业, 轨迹规划, 贪婪算法, 遗传算法

Abstract:

Intelligent mining is the mainstream direction of the future development of open-pit mines.Eelectric shovel is the main production equipment of open-pit mines,so the study of electric shovel autonomous shoveling technology is one of the core steps to realize the intelligent mining of open-pit mines in the future.During the autonomous shoveling process,the electric shovel uses its excavation mechanism,shovels the ore out of the mine and dumps the ore into a transport truck that the ore has been parked at the dump position.When the shovel has finished loading the ore shovel in the corresponding mining area of the current working position,it will slowly move through its moving mechanism to the next position point and continue to shovel the ore pile in the target area.Because of the huge volume of the electric shovel itself,the continuous work of the excavation mechanism and the moving mechanism consume a lot of electric energy. In order to improve the efficiency of the electric shovel in the process of autonomous shoveling,reduce the energy consumption of the electric shovel work,this paper proposed a method of optimizing the moving route of the shovel,by planning the electric shovel moving route and digging area,shortening the length of the electric shovel moving route.A method for optimizing the mobile route of electric shoveling was proposed.On the basis of the known electric shovel working area,in order to excavate all the ore piles in the working area and the electric shovel moves the least number of times,greedy algorithm was used to plan the set of job locations where the shovel moves the least number of times.By increasing the transition point and other ways to further optimize the electric shovel movement path and adjust the corresponding mining area planning,to form the optimal trajectory of the final electric shovel operation.Selecting the ore pile after blasting in an area in a mine aerial map as an electric shovel to be shoveled,based on the above method, the mobile route of electric shovel loading was optimized.The results show that the total distance of the generated electric shovel moving path is short,and the planned excavation area meets the actual production requirements,which proves that the method can provide guidance for the movement trajectory planning of the autonomous shovel.

Key words: open-pit mine, electric shovel, shoveling operation, trajectory planning, greedy algorithm, genetic algorithm

中图分类号: 

  • TD422

图1

求解电铲作业位置集流程图"

图2

电铲作业位置点与对应挖掘区域示意图"

图3

基于遗传算法解决TSP问题的流程图"

图4

使用遗传算法规划旅行商路径示意图(a)城市位置点;(b)旅行路线"

图5

电铲不合理挖掘区域示意图(a)电铲不合理挖掘区域;(b)新增过渡点及对应挖掘区域"

图6

电铲移动存在障碍示意图(a)电铲移动存在障碍;(b)新增过渡点优化移动路径"

图7

电铲待挖掘区域(a)矿堆开放区域和待挖掘区域;(b)待挖掘矿堆俯视图"

图8

电铲作业位置点及电铲移动路径(a)电铲作业位置点;(b)电铲移动路径"

图 9

电铲移动路径及挖掘区域"

图 10

优化后电铲移动路径及挖掘区域"

图 11

优化前(a)和优化后(b)移动路径局部图对比"

Al-shihabi S,Arafeh M,Barghash M,2015.An improved hybrid algorithm for the set covering problem[J].Computers & Industrial Engineering,85:328-334.
Beasley P,McAree P R,2013.Design and construction of a scale robotic excavator work-cell to test automated excavation algorithms[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.Wollongong,Australia:IEEE.
Bradley D,Seward D W,1998.The development,control and operation of an autonomous robotic excavator[J].Journal of Intelligent and Robotic Systems,21(1):73-97.
Cannon H,Burnett S,Colburn S,al et,1999.Extended Earthmoving with an Autonomous Excavator[D].Pittsburgh:Carnegine Mellon University.
Dunbabin M,Corke P,2006.Autonomous excavation using a rope shovel[J].Journal of Field Robotics,23(6/7):379-394.
Feng Fubao,2006.Set Cover Problem Research[D].Jinan:Shandong University.
Li Junwei,2017.Research on Traveling Salesman Problem of Logistics Distribution[D].Harbin:Harbin Institute of Te-chnology.
Ren Haonan,2008.Research on Genetic Algorithm for Solving Traveling Salesman Problem[D].Jinan:Shandong University.
Sakaida Y,Chugo D,Yamamoto H,al et,2008.The analysis of excavator operation by skillful operator-extraction of common skills[C]//SICE Annual Conference.Chofu,Tokyo,Japan:IEEE.
Seo J,Lee S,Kim J,al et,2011.Task planner design for an automated excavation system[J].Automation in Construction,20(7):954-966.
Singh S,1994.Developing plans for robotic excavators[C]//Proceedings of the ASCE Conference on Robotics for Challenging Environments.Albuquerque,New Mexico:American Society of Civil Engineers.
Singh S,1995.Learning to predict resistive forces during robotic excavation[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation.Nagoya,Aichi,Japan:IEEE.
Singh S,Simmons R,1992.Task planning for robotic excavation[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.Raleigh,N C,USA:IEEE:1284-1291.
Sun Wenbin,Wang Jiang,2016.An algorithm for TSP problem based on genetic algorithm and multi-optimization operation[J].Geography and Geo-Information Science,32(4):1-4.
Wang Yiyuan,2017.Research on Methods of Several Kinds of Set Covering Problems[D].Changchun:Jilin University.
Winstanley G,Usher K,Corke P,al et,2007.Dragline automation-A dedade of development-Shared autonomy for improving mining equipment productivity[J].IEEE Robotics & Automation Magazine,14(3):52-64.
Yao Guohui,2009.Studies on Algorithms for Combinatorial Optimization Problems[D].Jinan:Shandong University.
Yu Yingying,Chen Yan,Li Taoying,2014.Improved genetic algorithm for solving TSP[J].Control and Decision,29(8):1483-1488.
Yuan Hao,2017.Research and Application of Traveling Salesman Problem[D].Nanjing:Nanjing University of Posts and Telecommunications.
Yue Pengqi,2019.Exploration of solving TSP problem based on genetic algorithms[J].Modern Information Technology,3(4):10-12.
冯富宝,2006.集合覆盖问题研究[D].济南:山东大学.
李俊纬,2017.物流配送TSP问题的研究[D].哈尔滨:哈尔滨工业大学.
任昊南,2008.用遗传算法求解TSP问题[D].济南:山东大学.
孙文彬,王江,2016.一种基于遗传算法的TSP问题多策略优化求解方法[J].地理与地理信息科学,32(4):1-4.
王艺源,2017.若干集合覆盖问题的方法研究[D].长春:吉林大学.
姚国辉,2009.若干组合优化问题的算法研究[D].济南:山东大学.
于莹莹,陈燕,李桃迎,2014.改进的遗传算法求解旅行商问题[J].控制与决策,29(8):1483-1488.
袁豪,2017.旅行商问题的研究与应用[D].南京:南京邮电大学.
岳鹏齐,2019.基于遗传算法解决TSP问题探索[J].现代信息科技,3(4):10-12.
[1] 许瑞, 侯奎奎, 王玺, 刘兴全, 李夕兵. 基于核主成分分析与SVM的岩爆烈度组合预测模型[J]. 黄金科学技术, 2020, 28(4): 575-584.
[2] 康恩胜, 孟海东, 赵自豪, 何滔. 基于物探技术的露天矿边坡失稳因素勘测研究[J]. 黄金科学技术, 2020, 28(3): 363-371.
[3] 肖文丰,陈建宏,陈毅,王喜梅. 基于神经网络与遗传算法的多目标充填料浆配比优化[J]. 黄金科学技术, 2019, 27(4): 581-588.
[4] 涂鸿渐,王李管,陈鑫,任助理,张炬. 基于混合整数规划法的露天矿配矿品位控制[J]. 黄金科学技术, 2019, 27(3): 458-465.
[5] 张炬,王李管,宋华强,任助理,毕林. 露天矿境界优化几何约束模型优化及其应用[J]. 黄金科学技术, 2018, 26(6): 795-802.
[6] 贾明涛, 涂小腾, 任助理, 陈鑫, 宋华强. 基于改进最大流最小割算法的露天境界优化及应用[J]. 黄金科学技术, 2018, 26(3): 318-324.
[7] 杨明财, 盛建龙, 叶祖洋, 董舒. 基于FlAC3D的露天矿边坡稳定性及影响因素敏感性分析[J]. 黄金科学技术, 2018, 26(2): 179-186.
[8] 贾明涛,吕青海,陈鑫,宋华强. 聚合分期算法在露天矿中长期生产计划编制中的应用[J]. 黄金科学技术, 2017, 25(4): 58-64.
[9] 张二洋,陈建宏. 基于Surpac矿山设计软件及虚幻引擎实现的矿山虚拟现实漫游系统[J]. 黄金科学技术, 2017, 25(4): 93-98.
[10] 刘志祥,刘奕然,兰明. 矿井涌水量预测的PCA-GA-ELM模型及应用[J]. 黄金科学技术, 2017, 25(1): 61-67.
[11] 叶培. 一种新的量子遗传算法在阳山金矿GPS卫星信号去噪处理中的应用探讨[J]. 黄金科学技术, 2015, 23(2): 83-87.
[12] 文超, 顾清华, 冯居易. 基于GIS的露天矿配矿管理系统研究[J]. J4, 2009, 17(2): 58-62.
[13] 李和平, 王晓亮, 汪洋, 李洪海, 薛田喜. 露天松动爆破技术在河西金矿的试验与应用[J]. J4, 2007, 15(4): 45-50.
[14] 白晓平, 才庆祥. 露天矿半连续运输系统可靠性研究[J]. J4, 2000, 8(2): 40-43.
[15] 狄卫民, 云庆夏. 应用网络流规划编制露天矿最优排土计划[J]. J4, 1999, 7(4~5): 78-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!