img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (1): 164-172.doi: 10.11872/j.issn.1005-2518.2021.01.114

• 采选技术与矿山管理 • 上一篇    

甘肃某难选金铜氧化矿浮选试验研究

李恒()   

  1. 中国有色金属工业西安勘察设计研究院有限公司,陕西 西安 710061
  • 收稿日期:2020-06-22 修回日期:2020-08-20 出版日期:2021-02-28 发布日期:2021-03-22
  • 作者简介:李恒(1992-),男,陕西宝鸡人,助理工程师,从事难处理金矿选矿研究工作。980848142@qq.com
  • 基金资助:
    英国子午线矿业公司获得巴西喀巴卡项目;的关键许可

Experimental Research on Flotation of a Refractory Gold and Copper Oxide Ore in Gansu

Heng LI()   

  1. Xi’an Engineering Investigation and Design Research Institute of China National Non-ferrous Metals Industry Co. ,Ltd. ,Xi’an 710061,Shaanxi,China
  • Received:2020-06-22 Revised:2020-08-20 Online:2021-02-28 Published:2021-03-22

摘要:

甘肃某难选金铜氧化矿金含量为4.83 g/t,铜含量为1.18%,铜氧化率高达95.87%。铜矿物以难选的硅孔雀石为主,且与脉石矿物关系密切,金与铜矿物呈伴生关系。对原矿工艺矿物学进行了系统的研究,分析了尾矿中铜、金损失的原因。在磨矿细度为-74 μm占80%,Na2S作硫化剂,CuSO4作活化剂,丁基黄药、羟肟酸和25号黑药作捕收剂的条件下,采用一次粗选,四次扫选,粗精矿再磨后三次精选硫化浮选工艺流程,可获得金品位为86.65 g/t、金回收率为89.11%,铜品位为16.93%、铜回收率为71.92%,银品位为216.24 g/t、银回收率为87.26%的金铜精矿。金铜精矿可采用热压预氧化—无氰化工艺流程回收金铜,该选冶流程可为金铜氧化矿的开发利用提供借鉴。

关键词: 金铜氧化矿, 工艺矿物学, 硅孔雀石, 硫化浮选, 组合捕收剂, 金铜精矿

Abstract:

Silicon malachite is an extremely refractory copper oxide mineral,and the focus of chrysocolla flotation research is the development of new reagents.However, the selectivity and price factors of new pharmaceuticals restrict their industrial applications.In order to improve the flotation index under the premise of using conventional flotation reagents, it is very important to conduct process mineralogy research on refractory copper oxide ore.A refractory gold-copper oxide ores in Gansu Province contains Au 4.83 g/t and Cu 1.18%. The oxidation rate of Cu is as high as 95.87%.The copper minerals are mainly chrysocolla, which is difficult to select and closely related to gangue minerals.Gold is associated with copper minerals.Based on the study of mineralogy of raw ore process, the causes of copper and gold losses in tailings were analyzed and discussed.Sulfide flotation was adopted.After grinding,the products with fineness less than 74 μm accounted for 80%.Under the conditions of sodium sulfide as curing reagent, copper sulfate as activator, butyl xanthate, hydroxamic acid and No.25 dithiophosphate as collector, the sulfide flotation process adopted is “roughing once,sweeping four times,and regrinding coarse concentrate for three times”.The results show that the gold-copper concentrate with Au grade of 86.65 g/t, Au recovery rate of 89.11%, Cu grade of 16.93%, Cu recovery rate of 71.92%,Ag grade of 216.24 g/t and Ag recovery rate of 87.26% was obtained.Through analysis,it is believed that there are 4 reasons for the loss of copper and gold in tailings.1)The oxidation rate of copper is high, there are many types of copper minerals,and there are differences in floatability,in addition,silicon malachite is the main copper-bearing mineral, and its floatability is not good.2)There is a phenomenon that fine-grained silicon malachite is wrapped in gangue minerals.3) The tailings screening analysis shows that the copper lost in the tailings is of fine grade,therefore, the loss of this part of copper in the tailings is a reasonable loss.4)The gold phase analysis results show that the distribution rate of silicate-coated gold and carbonate-coated gold in the tailings is 76.38%, and the gold lost in the tailings is mainly wrapped in veins stone minerals.Gold-copper concentrates can be pre-oxidized by hot-pressing and non-cyanide to recover gold and copper.This smelting process can provide a certain reference for the development and utilization of gold-copper oxide copper mine.

Key words: gold-copper oxide ores, processing mineralogy, silicon malachite, sulfide flotation, combined collector, gold-copper concentrate

中图分类号: 

  • TD953

表1

原矿多元素分析结果"

元素含量/%元素含量/%
Ag*12.45MgO3.14
Au*4.83CaO3.74
Cu1.18Al2O315.31
Pb0.02SiO263.73
Zn0.063Na2O0.14
S0.032K2O2.07
As0.13TFe1.03
Mn1.77

表2

铜物相分析结果"

相别含量分布率
合计1.210100.00
硫化相中铜0.0292.40
氧化相中铜1.16095.87
结合相中铜0.0251.73

表3

金物相分析结果"

相别含量/(g·t-1分布率/%
合计5.09100.00
裸露及半裸露金3.7573.67
碳酸盐包裹金0.5911.59
硅酸盐包裹金0.183.54
硫化物包裹金0.5310.41
赤褐铁包裹金0.050.79

表4

矿物组成及相对含量"

矿物名称含量矿物名称含量
角闪石6.02石英7.55
斜长石60.38绿泥石6.93
钾长石15.76黑云母3.36

图1

磨矿细度试验流程"

图2

磨矿细度试验结果"

图3

调整剂种类试验结果注:对比试验各药剂用量均为最佳用量;A为Na2S(1 500 g/t);B为Na2S+(NH4)2SO4(1 500 g/t+500 g/t);C为Na2S+水玻璃(1 500 g/t+500 g/t);D为Na2S+水玻璃(1 500 g/t+500 g/t);E为Na2S+(NaPO3)6 (六偏磷酸钠)(1 500 g/t+500 g/t);F为三乙醇胺(60 g/t);G为Na2S+CuSO4(1 500 g/t+500 g/t)"

图4

Na2S用量试验结果注:试验条件为磨矿细度为-74 μm占80%,CuSO4用量为500 g/t,丁基黄药用量为200 g/t,羟肟酸用量为100 g/t,25号黑药用量为32 g/t"

图5

CuSO4用量试验结果注:试验条件为-74 μm粒径占80%,Na2S用量为1 500 g/t,丁基黄药用量为200 g/t,羟肟酸用量为100 g/t,25号黑药用量为32 g/t"

图6

捕收剂种类试验结果注:对比试验各药剂用量均为最佳用量;A为丁基黄药+25号黑药+异羟肟酸(200 g/t+32 g/t+60 g/t); B为丁基黄药+25号黑药+ZH(200 g/t+32 g/t+60 g/t); C为丁基黄药+25号黑药+ML(200 g/t+32 g/t+60 g/t);D为丁基黄药+丁胺黑药+基异羟肟酸(200 g/t+100 g/t+60 g/t);E为丁基黄药+丁胺黑药+ZH(200 g/t+100 g/t+60 g/t);F为丁基黄药+丁胺黑药+ML(200 g/t+100 g/t+60 g/t);G为丁基黄药+丁胺黑药+羟肟酸(200 g/t+100 g/t+60 g/t);H为丁基黄药+25号黑药+羟肟酸(200 g/t+32 g/t+60 g/t)"

图7

捕收剂用量试验注:试验(a)~试验(b)的药剂制度依次为CuSO4 900 g/t+羟肟酸100 g/t+25号黑药32 g/t+Na2S 1 500 g/t,CuSO4900 g/t+Na2S 1 500 g/t+丁基黄药100 g/t+羟肟酸100 g/t,CuSO4 900 g/t+Na2S 1 500 g/t+丁基黄药100 g/t;试验(c)的药剂制度为+25号黑药48 g/t"

图8

闭路试验流程"

表5

闭路试验结果"

产品名称产率/%品位回收率/%
Cu/%Au/(g·t-1)AgCuAuAg
金铜精矿5.0216.9385.65216.2471.9289.1187.26
尾矿94.980.350.551.6728.0810.8912.74
原矿100.001.184.8212.44100.00100.00100.00

表6

尾矿粒度筛选结果"

粒度/mm占有率/%铜品位/%铜分布率/%
合计100.00.35100.0
+0.1502.720.221.70
-0.150+0.07532.590.2926.99
-0.075+0.04522.220.2918.18
-0.045+0.03855.560.314.83
-0.0385+0.030812.390.3110.80
-0.030824.520.5437.50

表7

尾矿金物相分析结果"

相别含量/(g·t-1分布率/%
合计0.56100.00
裸露及半裸露金0.0285.00
碳酸盐包裹金0.18733.54
硅酸盐包裹金0.24042.84
硫化物包裹金0.0162.83
赤褐铁包裹金0.08915.79

表8

金铜精矿产品质量分析结果"

元素含量元素含量
Au*85.65S0.85
Ag*216.24As0.16
Cu16.93Zn0.092
MgO3.07Bi+Sb<0.1
Pb0.039
Cui Yiqi,Meng Qi,Wang Feiwang,al et,2016.Low-grade and high combination ratio copper oxide ore using united technology of beneficiation and metallurgy[J].Journal of Central South University(Natural Science Edition),47(8):2550-2555.
Dai Kejin,Chen Daixiong,Zhang Qin,al et,2016.Experiment on floatation of a domestic oxidized copper ore with high fine mud content [J].Nonferrous Metals Engineering, 6(2):52-55,100.
Lei Li,Wang Hengfeng,Cao Xin,2014.Experimental research on mineral processing of one copper bearing gold ore[J].Gold,35(9):56-60.
Li Guoyao,2017.Flotation test on high oxidation copper ore[J].Modern Mining,33(12):102-104.
Li Xinxing,Li Hongsong,Yang Yang,2015.Flotation test of a refractory copper oxide ore[J].Modern Mining,31(7):73-75.
Li Youhui,Li Chengbi,Zhang Xingrong,al et,2017.Flotation experiment on an oxide copper ore in Yunnan [J].Metal Mine,(4):68-71.
Long Wei,2017.Study on Beneficiation Process of a Low-grade Refractory Copper Oxide Ore[D].Wuhan:Wuhan University of Science and Technology.
Lü Chao,Zhao Xuan,Liang Yiqiang,al et,2019.Experimental study on flotation of a certain copper oxide from Yunnan [J].Nonferrous Metals(Mineral Processing Section),(3):46-50.
Ning Fatian,Feng Zhongwei,Mo Jiangmin,al et,2018.Experiment study on mineral processing of a refractory oxide copper ore of Guangxi[J].Nonferrous Metals(Mineral Processing Section),(4):15-18.
Peng Yingjian,Lü Chao,Yao Youli,2019.Research on flotation test of a copper oxide ore of Dongchuan in Yunnan [J].Mining Research and Development,39(3):25-28.
Qiao Jibo,Wang Shaodong,Zhang Jing,al et,2018.Beneficiation technology for copper oxide ore from Burma[J].Mining and Metallurgical Engineering,38(3):71-73,78.
Sun Guangzhou,Shan Yong,Huang Bin,al et,2017.Experimental research on beneficiation of Dongchuan Tangdan refractory copper oxide ore[J].Nonferrous Metals(Mineral Processing Section),(4):7-10,63.
Sun Zhijian,Chen Jinghua,Li Chengbi,al et,2013.Study on the beneficiation test of a refractory oxide copper ore containing high-content slimes[J].Nonferrous Metals (Mineral Processing Section),(4):5-8,13.
Sun Zhongmei,2016.Flotation experiment on a copper oxide ore[J].Modern Mining,32(2):55-57,62.
Sun Zhongmei,Long Yi,Zhang Xingxun,al et,2019.Study on improving recovery rate of refractory copper oxide ores[J].Non-Ferrous Metals(Mineral Processing Section),(5):45-49.
Wang Kai,2014.Experimental Research on Recovery of Refractory Copper Oxide Ore with High Combination Rate[D].Kunming:Kunming University of Science and Technology.
Wang Long,Niu Fusheng,Zhang Jinxia,al et,2016.Research progress of mineral processing technology of low grade copper oxide ore[J].Metal Mine,(9):127-131.
Wang Yijie,Wen Shuming,Liu Dan,al et,2013.Copper recovery from a refractory and high combination rate copper oxide ore using a combined process of beneficiation and metallurgy[J].Journal of Kunming University of Science and Technology(Natural Science Edition),38(5):28-34.
Yin Wanzhong,Wu Kai,2013. Current status and prospects of beneficiation technology for refractory copper oxide ore [J].Nonferrous Metal Engineering,3(6):66-70.
Zhang Fenghua,Song Baoxu,2014.Efficient recovery of a complex refractory copper oxide ore [J].Mining and Metallurgical Engineering,34(6):26-28,32.
崔毅琦,孟奇,王飞旺,等,2016.低品位高结合率氧化铜矿选冶联合试验[J].中南大学学报(自然科学版),47(8):2550-2555.
戴柯进,陈代雄,张芹,等,2016.国内某高细泥氧化铜矿选矿试验[J].有色金属工程,6(2):52-55,100.
雷力,王恒峰,曹欣,2014.某含铜金矿石选矿试验研究[J].黄金,35(9):56-60.
李国尧,2017.某高氧化率铜矿石浮选试验[J].现代矿业,33(12):102-104.
李新星,李红松,杨阳,2015.某难选氧化铜矿石浮选试验[J].现代矿业,31(7):73-75.
李有辉,李成必,张行荣,等,2017.云南某氧化铜矿石浮选试验[J].金属矿山,(4):68-71.
龙伟,2017.某难选低品位氧化铜矿选矿工艺研究[D].武汉:武汉科技大学.
吕超,赵轩,梁溢强,等,2019.云南某氧化铜浮选试验研究[J].有色金属(选矿部分),(3):46-50.
宁发添,冯忠伟,莫江敏,等,2018.广西某难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),(4):15-18.
彭英健,吕超,姚有利,2019.云南东川某氧化铜矿浮选试验研究[J].矿业研究与开发,39(3):25-28.
乔吉波,王少东,张晶,等,2018.缅甸某氧化铜矿选矿工艺研究[J].矿冶工程,38(3):71-73,78.
孙广周,单勇,黄斌,等,2017.东川汤丹难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),(4):7-10,63.
孙志健,陈经华,李成必,等,2013.某含泥难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),(4):5-8,13.
孙忠梅,2016.某氧化铜矿石硫化浮选试验[J].现代矿业,32(2):55-57,62.
孙忠梅,龙翼,张兴勋,等,2019.提高难选氧化铜矿选矿回收率试验研究[J].有色金属(选矿部分),(5):45-49.
王凯,2014.高结合率难选氧化铜矿选矿回收试验研究[D].昆明:昆明理工大学.
王龙,牛福生,张晋霞,等,2016.低品位氧化铜矿石选矿工艺研究进展[J].金属矿山,(9):127-131.
王伊杰,文书明,刘丹,等,2013.难处理高结合率氧化铜矿选冶联合工艺研究[J].昆明理工大学学报(自然科学版),38(5):28-34.
印万忠,吴凯,2013.难选氧化铜矿选冶技术现状与展望[J].有色金属工程,3(6):66-70.
张凤华,宋宝旭,2014.复杂难选氧化铜矿高效利用工艺研究[J].矿冶工程,34(6):26-28,32.
[1] 郭彩莲,牛芳银,陈炳龙,王海军. 老挝巴勉石英脉型金矿石工艺矿物学研究[J]. 黄金科学技术, 2021, 29(6): 908-916.
[2] 杨波,王晓,解永刚,谢贤. 青海某难浸金矿的工艺矿物学研究[J]. 黄金科学技术, 2021, 29(3): 467-475.
[3] 冯大伟,王玲. 选冶联合处理低品位含金尾矿的试验研究[J]. 黄金科学技术, 2021, 29(2): 315-323.
[4] 傅开彬,王维清,赵涛涛,龙美樵,侯普尧,杜明霞. 缅甸实皆省某金矿工艺矿物学研究[J]. 黄金科学技术, 2020, 28(2): 278-284.
[5] 谢雄辉. 陇南紫金难处理金精矿工艺矿物学研究[J]. 黄金科学技术, 2019, 27(6): 950-956.
[6] 贵琪皓,王仕兴,张利波,郑金庆. 云南镇源难处理金精矿工艺矿物学研究[J]. 黄金科学技术, 2019, 27(6): 941-949.
[7] 张文平, 蔡明明, 徐超. 某含金原生矿石的工艺矿物学研究[J]. 黄金科学技术, 2019, 27(5): 770-776.
[8] 刘子龙,杨洪英,佟琳琳,陈国宝. 高海拔环境下氧化铜矿浮选优化试验研究[J]. 黄金科学技术, 2019, 27(4): 589-597.
[9] 唐浪峰,盛秋月,马英强,印万忠. 非洲中南部某镍矿石工艺矿物学性质[J]. 黄金科学技术, 2019, 27(2): 285-291.
[10] 宋学文,朱加乾,罗增鑫,陈波. 某氰渣工艺矿物学及金浮选工艺研究[J]. 黄金科学技术, 2018, 26(1): 89-97.
[11] 陈道前,傅开彬,董发勤,胡如权,邓全淋,徐龙华,张亚龙,杨永强. 四川里伍铜矿多金属低品位尾矿工艺矿物学研究[J]. 黄金科学技术, 2015, 23(6): 70-74.
[12] 马玉天,陈大林,陈治毓,钟清慎,黄虎军,杜彦君. 高砷高硫难处理金精矿预处理工艺研究[J]. 黄金科学技术, 2014, 22(4): 103-107.
[13] 林鸿汉. 某含金铜废石资源化利用试验研究[J]. 黄金科学技术, 2014, 22(3): 77-81.
[14] 曹成超. 新疆某矿山浮选试验研究[J]. 黄金科学技术, 2014, 22(3): 70-76.
[15] 王学乾,唐俊智,曲弘范. 多金属矿理论回收率计算探讨[J]. 黄金科学技术, 2014, 22(2): 60-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 江秉忠, 宋丙剑. 黑龙江嘎拉山地区金找矿潜力分析[J]. J4, 2011, 19(1): 34 -37 .
[2] 焦革军,刘洪川, 张绍宁,申勇. 便携式GPS接收机在大面积中、小比例尺地质测量、化探扫面的精度评价及应用[J]. J4, 2005, 13(05): 30 -32 .
[3] 陈海明, 刘智明, 曲晖. 东安金矿床蚀变矿物特征[J]. J4, 2006, 14(4): 14 -18 .
[4] 李源. 国有施工企业面临的问题及对策[J]. J4, 2001, 9(3-4): 73 -84 .
[5] 冯锡文, 王新华. 系统动力学理论在矿井生产能力核定中的应用初探[J]. J4, 1999, 7(4~5): 45 -47 .
[6] 李保平,陈玉华,周晓中,刘建华,赵程龙,阎杰,刘金龙,雷迅. 青海各玛龙铅锌矿地质地球化学特征及找矿前景[J]. J4, 2011, 19(3): 9 -13 .
[7] 刘健 ,樊满华 ,邓志高 ,张青松 ,郑成英. 那林金矿全面留矿法试验研究[J]. J4, 2008, 16(6): 48 -50 .
[8] 张宝林,蔡新平,王杰,梁光河,丁汝福,肖骑彬,宋保昌,祁民. 晋冀蒙交界地区隐伏新类型金矿的找矿前景以堡子湾、九对沟、水晶屯金矿为例[J]. J4, 2004, 12(2): 5 -11 .
[9] 宋贺民, 张文钊, 徐述平. 胶东大磨曲家金矿地球化学异常模式及找矿意义[J]. J4, 2006, 14(6): 13 -23 .
[10] 荆龙华,高若峰. 浅孔留矿法在甲乌拉铅锌矿的应用[J]. J4, 2008, 16(3): 57 -59 .