img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (1): 90-98.doi: 10.11872/j.issn.1005-2518.2021.01.094

• 采选技术与矿山管理 • 上一篇    下一篇

多层缓倾薄矿群竖井位置的三维协同设计

陈庆发(),肖体群,高远   

  1. 广西大学资源环境与材料学院,广西 南宁 530004
  • 收稿日期:2020-05-28 修回日期:2020-09-03 出版日期:2021-02-28 发布日期:2021-03-22
  • 作者简介:陈庆发(1979-),男,河南郸城人,博士,教授,博士生导师,从事矿山岩石力学和非传统采矿工艺理论方面的研究工作。chqf98121@163.com
  • 基金资助:
    广西自然科学基金联合资助培育项目“金属矿床协同采矿方法”(2018GXNSFAA138105)

3D Co-Design of Shaft Position in Multi-layer Gently Inclined Thin Ore Group

Qingfa CHEN(),Tiqun XIAO,Yuan GAO   

  1. School of Resources,Environment and Materials,Guangxi University,Nanning 530004,Guangxi,China
  • Received:2020-05-28 Revised:2020-09-03 Online:2021-02-28 Published:2021-03-22

摘要:

针对传统二维开拓设计模式存在的设计效率低、工作量大和竖井最优参考位置难以确定等问题,开展竖井位置的三维协同设计研究。以广西华锡集团铜坑锌多金属矿为例,从协同开采理念出发,构建由矿量与矿体埋深相结合的三维运输功计算模型;借助三维矿业软件对岩石移动范围进行圈定并给出竖井开拓初选方案;采用集对分析同一度法,以安全性、资源利用率、运输功和经济投资4个评价指标对初选方案进行优选。研究表明:该三维运输功计算模型可从三维角度精确规划竖井的空间最优位置,可为开拓设计提供有益参考。

Abstract:

With the rapid development of digital mine,3DMine software has been widely used in mine design institutes.However,for multi-layer gently inclined thin ore group,the traditional two-dimensional underground mining development design mode has some problems,such as low design efficiency,heavy workload and difficult to determine the optimal reference location of development shaft.Under the guidance of the concept of synergetic mining,the 3D synergetic design of shaft location was carried out to accurately plan the spatial layout of the development shaft,improve the efficiency of mining design and ensure the effectiveness of the design scheme.Taking Tongkeng zinc polymetallic deposit in Guangxi Huaxi Group as the engineering background,and referring to the traditional two-dimensional transport work calculation model,considering the influence of ore volume and different burial depth on transport work,a three-dimensional transport work calculation model was established based on straight line distance,and then the vertical shaft development arrangement was optimized and the competition problem of transportation work was dealt with cooperatively.According to the determination method of rock movement parameters recommended by Mining Survey Research Institute in Soviet Union,in the Tongkeng zinc polymetallic mine case,the rock is classified into layered rock mass and rock movement characteristics.Combined with the occurrence form,engineering geological condition,hydro-geological condition,surface topography,geological structure,mining method and rock mass mechanical parameters of the orebody,the rock movement angle of the upper,lower and end of the orebody is determined to be 75% with reference to the actual data of the surface rock displacement of similar mines.With the aid of 3DMine software,the scope of rock movement was delineated,and combined with the proposed three-dimensional transport work calculation model,the preliminary selection scheme of shaft development was given.The set pair analysis method was used to optimize the development preliminary selection scheme with four evaluation indexes of safety,resource utilization rate,transportation work and economic investment.The results show that,based on the three-dimensional transportation work calculation model,the optimal scheme is “newly excavated mixed well and using the No.3 and No.4 blind inclined well development scheme”. Results of this study indicate that,based on the three-dimensional transport work calculation model under the straight-line distance,the transportation competition relationship among different buried depths of the seam is coordinated,which makes up for the shortcomings of the transport work calculation model in the development design,and can accurately plan the optimal spatial reference layout location of development shaft from the three-dimensional perspective,thus providing useful reference for development design.

Key words: multi-layer gently inclined thin ore group, shaft development, 3D Co-design, three dimensional transport work, 3DMine software, set pair analysis

中图分类号: 

  • TD440

图1

广西华锡集团铜坑锌多金属矿主矿体三维立体图1-78号矿体;2-82号矿体;3-28-2号矿体;4-94号矿体;5-95号矿体;6-96号矿体;7-97号矿体"

图2

矿体开采岩石移动范围"

表1

铜坑锌多金属矿赋存情况"

矿体编号矿块编号矿量/m3重心坐标(xyz
28#1340 315.59859.01545.45462.27
2131 653.071 346.49683.34462.27
3308 447.79861.651 170.82462.27
4343 575.401 420.271 174.33462.27
94#5629 794.12787.84579.68328.79
6646 248.221 522.97573.53328.79
7735 954.63784.321 064.50328.79
8763 618.131 526.491 190.10328.79
95#9781 148.49769.39608.66226.48
10384 747.801 507.16712.30226.48
11124 093.851 019.711 033.76226.48
12514 246.591 435.141 267.39226.48
96#13574 461.21856.34603.3968.79
14436 322.911 409.67645.5568.79
15501 670.04888.841 246.3168.79
16574 855.321 480.811 240.1668.79
97#17216 840.90953.83846.681.69
18255 115.901 463.25843.171.69
19267 916.90932.751 154.961.69
20134 774.871 346.431 161.111.69

图3

方案Ⅰ和方案Ⅱ开拓方案图1-东副井;2-3号盲斜井;3-4号盲斜井;4-主井(混合井);5-风井;6-副井;7-斜坡道"

图4

方案Ⅲ开拓方案图1-东副井;2-3号盲斜井;3-4号盲斜井;4-主井(混合井);5-风井;6-副井;7-30 m水平巷道;8-90 m水平巷道;9-255 m水平巷道"

表2

专家指标排序"

指标重要程度排序
专家1专家2专家3专家4
安全性1212
资源利用率2133
运输功4344
经济投资3421

表3

开拓方案比较"

分析指标方案Ⅰ方案Ⅱ方案Ⅲ
安全评价/分869
经济投资/万元13 67313 79211 871
运输功/(t·km)9 021 4937 217 19416 238 688
资源利用率/%746992
Cai Kuang,1990.The graph theory solution of the minimum transport work of mine[J].Nonferrous Metals(Mining Section),42(1):28-32.
Chen Huan,1991.Determination of minimum comprehensive transportation work well location[J].Chemical Mining Technology,20(1):12-16.
Chen Qingfa,Su Jiahong,2013.Synergetic mining and its technology system[J].Journal of Central South University(Science and Technology),44(2):733-736.
Chen Qingfa,Zhou Keping,Gu Desheng,2011.Collaborative mining and collaborative utilization of goaf[J].China Mining Industry,20(12):77-80,102.
Fu Yuhua,2010.Study on Stability of Rock Mass and Rule of Strata Movement for Transition from Open-pit to Underground Mining[D].Changsha:Central South University.
Guo Yanhui,2015.Study on the Regularity,Mechanism and Deformation Forecast of Rockmass Movement Induced by Caving Mining Steep Deposit in High Stress Area[D].Kunming:Kunming University of Science and Technology.
Nie Xingxin,Chen Yongfeng,Lu Caiwu,2007.Application of genetic algorithm in optimizing open-pit development system[J].Metal Mine,42(2):19-22.
Rafiei R H,Martin C D,2018.Modeling the progressive failure of hard rock pillars[J].Tunnelling and Underground Space Technology,74:71-81.
Singh R,Kumar A,Singh A K,al et,2016.Rib/snook design in mechanised depillaring of rectangular/square pillars[J].International Journal of Rock Mechanics & Mining Sciences,84:119-129.
Wu Lixin,2008.Progress of digital mine in China[J].Geomatics World,6(5):6-13.
Wu Lixin,Wang Yunjia,Ding Enjie,al et,2012.Thirdly study on digital mine:Serve for mine safety and intelligent mine with support from IoT[J]. Journal of China Coal Society,37(3):357-365.
Wu Lixin,Zhu Wangxi,Zhang Ruixin,2004. Digital mine and the future development of mines in China[J].Science & Technology Review,25(7):29-31,28.
Wang Ping,2015.Study of Subsidence Angle and Its Area Range of Xiaoguanzhuang Iron Mine[D].Shenyang:Northeastern University.
Xie Shijun,1986.Underground Mining of Metal Deposits[M].Beijing:Metallurgy Industry Press.
Xinge U K, La’ao D G,Song Yanqi,1995.A case study of evaluating the stability of safety pillar in shaft by numerical simulation [J]. Foreign Metal Mining Magazine,33(7):3-10.
Yan Dongmei,2004.Study on Location of Urban Logistics Center[D].Tianjin:Tianjin University.
Yuan Yi,2008.Study on the Determination Method of Rock Movement Angle and Range in Underground Metal Mines[D].Changsha:Central South University.
Zhang Wenju,2017.Study on the Safety Depth of Cut and Fill Mining and the Demarcation of Security Mine[D].Wuhan:Wuhan University of Technology.
Zhang Xiaoyi,2013.The Study of the Rule of Underground Pressure Activity and Optimization of Stoping Sequence in the Deep Mining of Jinshandian Iron Mine[D]. Wuhan:Wuhan University of Science and Technology.
Zhao Guoyan,2010.Research on Hidden Cavity Detection and Theories of Stability Prediction in Metal Mine[D].Changsha:Central SouthUniversity.
Zhao Keqin,1994.Comprehensive evaluation and decision of scheme based on set pair analysis[J].Police Research and Exploration,10(2):14-15.
Zhou Hua,2005.Application of Ant Colony Algorithm in Structural Optimization of Development System [D].Xi’an:Xi’an University of Architecture and Technology.
Zhu Nian,2011.The Research and Application of Scheme Selection of Mine Exploit System Based on ES and AHP[D].Wuhan:Wuhan University of Technology.
蔡匡,1990.矿井最小运输功的图论解算[J].有色金属(矿山部分),42(1):28-32.
陈寰,1991.最小综合运输功井位的确定[J].化工矿山技术,20(1):12-16.
陈庆发,苏家红,2013.协同开采及其技术体系[J].中南大学学报(自然科学版),44(2):732-737.
陈庆发,周科平,古德生,2011.协同开采与采空区协同利用[J].中国矿业,20(12):77-80,102.
付玉华,2010.露天转地下开采岩体稳定性及岩层移动规律研究[D].长沙:中南大学.
郭延辉,2015.高应力区陡倾矿体崩落开采岩移规律、变形机理与预测研究[D].昆明:昆明理工大学.
解世俊,1986.金属矿床地下开采[M].北京:冶金工业出版社.
聂兴信,陈永锋,卢才武,2007.遗传算法在露天矿开拓系统优化中的应用[J].金属矿山,42(2):19-22.
吴立新,2008.中国数字矿山进展[J]. 地理信息世界,6(5):6-13.
吴立新,汪云甲,丁恩杰,等,2012.三论数字矿山——借力物联网保障矿山安全与智能采矿[J].煤炭学报,37(3):357-365.
吴立新,朱旺喜,张瑞新,2004.数字矿山与我国矿山未来发展[J].科技导报,25(7):29-31,28.
王平,2015.小官庄铁矿岩层移动角与地表移动范围研究[D].沈阳:东北大学.
辛格U K,拉奥D G,宋彦琦,1995.用数值模拟法估量井筒保安矿柱稳定性的案例研究[J].国外金属矿山,33(7):3-10.
严冬梅,2004.城市物流中心选址问题研究[D].天津:天津大学.
袁义,2008.地下金属矿山岩层移动角与移动范围的确定方法研究[D].长沙:中南大学.
张文举,2017.充填开采安全深度与保安矿柱圈定研究[D]. 武汉:武汉理工大学.
张小义,2013.金山店铁矿深部开采地压活动规律研究及回采顺序优化[D].武汉:武汉科技大学.
赵国彦,2010.金属矿隐覆采空区探测及其稳定性预测理论研究[D].长沙:中南大学.
赵克勤,1994.基于集对分析同一度的方案综合评价决策[J].决策探索,10(2):14-15.
周华,2005.蚁群算法在开拓系统结构优化中的应用研究[D].西安:西安建筑科技大学.
朱念,2011.基于ES和AHP的矿山开拓方案选择的研究与应用[D].武汉:武汉理工大学.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!