img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (1): 147-154.doi: 10.11872/j.issn.1005-2518.2021.01.051

• 采选技术与矿山管理 • 上一篇    下一篇

充填料浆流动温变性研究

孙京阁(),关鑫磊,刘杰,赵忠琦()   

  1. 山东黄金矿业(玲珑)有限公司,山东 招远 265419
  • 收稿日期:2020-03-03 修回日期:2020-07-21 出版日期:2021-02-28 发布日期:2021-03-22
  • 通讯作者: 赵忠琦 E-mail:sunjg@sd-gold.com;974975253@qq.com
  • 作者简介:孙京阁(1979-),男,山东招远人,工程师,从事采矿技术管理工作。sunjg@sd-gold.com

Study on Flow Temperature Denaturation of Filling Slurry

Jingge SUN(),Xinlei GUAN,Jie LIU,Zhongqi ZHAO()   

  1. Shandong Gold Mining (Linglong) Co. ,Ltd. ,Zhaoyuan 265419,Shandong,China
  • Received:2020-03-03 Revised:2020-07-21 Online:2021-02-28 Published:2021-03-22
  • Contact: Zhongqi ZHAO E-mail:sunjg@sd-gold.com;974975253@qq.com

摘要:

为解决矿山充填料浆堵管事故频发的问题,以具有代表性的不同配比充填料浆为研究对象,通过安东帕MCR102高级流变仪获取并分析相关数据,重点研究了充填料浆的温度对高浓度充填料浆流变特性的影响,探索温度变化对充填料浆流动性能的影响。研究结果表明:(1)高浓度全尾砂充填料浆的流变性能会随着料浆的温度变化而发生变化;(2)随着温度的升高,高浓度全尾砂充填料浆黏度系数降低,屈服应力先下降再升高;(3)温度为10 ℃时高浓度全尾砂充填料浆流变性能最好。根据本研究结果,矿山在使用高浓度全尾砂充填料浆时,可适当调节充填料浆温度,使充填料浆达到流变性能最优状态,进而减少充填料浆堵管事故的发生。

关键词: 充填料浆, 流变特性, 温度, 黏度系数, 屈服应力, 高级流变仪

Abstract:

From June 2017 to April 2018,frequent pipe plugging accidents occurred in the underground filling of Linglong gold mine,which required a lot of manpower and material resources to restore the pipeline,greatly reducing the filling efficiency.The pipe plugging accident has seriously affected the normal production of the mine and has become one of the factors restricting the development of mine filling technology.In the filling process,the mixing station for filling slurry is generally set on the ground.After the water,full tailings and material C are fully mixed in the mixing barrel,they are transported to the underground goaf through the filling pipeline.The temperature difference between winter and summer in northern China is 30 ℃ to 40 ℃.The hydration reaction of cement is greatly affected by the temperature when the slurry is stirred.When the filling slurry enters the underground through the pipeline,it will be affected by the ground temperature,resulting in the change of slurry temperature.Therefore,the rheological characteristics of the filling slurry in the pipeline are always changing.The rate of cement hydration is greatly affected by the temperature,so the fluidity of the filling slurry will change in different transportation time.Therefore,it is necessary to study the influence of temperature change on the flow performance of the filling slurry.However,there is relatively few research on the influence of temperature change on the hydration of cement.In this paper,the flow characteristics of the filling slurry with full tailings at 20 ℃,15 ℃,10 ℃ and 5 ℃ were studied.According to the actual situation of the mine and the past research in the laboratory,the design slurry concentration is 65% and 68% respectively,and the ash sand ratio is 1∶8 and 1∶12 respectively.The time when material C,tailing and water are mixed together is taken as the starting point of timing.The Origin software was used to process 13 440 experimental data,at each temperature,then we get the shear rate-shear stress curves of different slurry ratio,slurry viscosity coefficient,line graph of relationship between slurry yield stress and slurry temperature and slurry temperature relationship line chart.Through the analysis,the following conclusions are obtained:In the same reaction time,the viscosity coefficient decreases with the increase of temperature;In the same reaction time,the yield stress decreases first and then increases with the increase of temperature;When the yield stress is the lowest,the corresponding reaction temperature of slurry is 10 ℃;The best temperature for the preparation and transportation of the slurry is 10 ℃,at this time,the material resistance loss coefficient of slurry is the smallest.According to the results of this study,when the mine uses high-concentration full tailings filling slurry,the filling temperature can be adjusted appropriately to make the filling slurry reach the optimal state of rheological properties,thereby reducing the occurrence of pipe blockage accidents with the filling slurry.

Key words: filling slurry, rheological properties, temperature, viscosity coefficient, yield stress, advanced rheometer

中图分类号: 

  • TD989

表1

玲珑金矿全尾砂和胶凝材料粒度指标"

粒径粒度/μm
全尾砂胶凝材料
d106.305.07
d2524.0323.93
d5094.0261.60
d75179.19154.68
d90228.21236.71

图1

玲珑选厂全尾砂粒度分布曲线"

表2

玲珑金矿全尾砂化学成分分析"

化学成分质量分数化学成分质量分数
SiO266.90CaO2.27
Al2O318.06Fe2O31.51
K2O4.70MgO0.88
Na2O2.85S0.25

图2

MCR102型流变仪(a)和恒温水浴装置(b)"

表3

温度对充填料浆流变特性影响的试验设计"

料浆配比灰砂比质量浓度/%胶凝材料/g尾砂/g水/g总计/g
8-651∶86516.25130.0078.75225.00
8-681∶86817.00136.0072.00
12-651∶126511.25135.0078.75
12-681∶126811.77141.2372.00

图3

温度为20 ℃时不同料浆浓度、灰砂比、时间下流变特性曲线"

图4

不同配比、温度下黏度变化曲线注:图例中“8-65”表示灰砂比为1∶8,料浆浓度为65%;其余依此类推"

图5

不同配比、温度下屈服应力变化曲线注:图例中“8-65”表示灰砂比为1∶8,料浆浓度为65%;其余图例依此类推"

图6

不同配比、温度下阻力损失变化曲线注:图例中“8-65”表示灰砂比为1∶8,料浆浓度为65%;其余图例依此类推"

Chang Qianfa,2003.Processing and disposition of solid wastes in mines [J].Conservation and Utilization of Mineral Resources,(5):38-42.
Chang Qianfa,2010.New progress on comprehensive utilization and emission reduction of mine tailings[J].Metal Mine,(3):1-5,61.
Du Xianfeng,2009.Application of grouting technology in filling and drilling[J].Xinjiang Nonferrous Metals,32(5):29,32.
Hou Guoquan,Guo Lijie,Yang Chao,al et,2014.Testing and study on the rheological properties of the high-density filling[J].China Mining Magazine,(Supp.2):238-241.
Hu Yajun,Shiqing Nan,Yao Zhengong,al et,2011.Experimental study on pipeline transportation of full tailings filling slurry[J].Mining Technology,11(6):20-22.
Huang Caiqi,2011.Key factors of backfill drilling and the construction technology[J].Exploration Engineering(Rock & Soil Drilling and Tunneling), 38(10):66-69,73.
Li Y L,Wang H,2011.A circulatory system and method of slurry delivery in long-distance pipeline transportation of iron ore[J].Proceedings of SPIE—The International Society for Optical Engineering,8205(1):82052S-1-82052-3.
Lin Zongshou,2012.Cement Technology[M].Wuhan:Wuhan University of Technology Press.
Wang Fengjiang,Wang Laigui,2003.Hazards of tail reservoir and its engineering control[J].The Chinese Journal of Geological Hazard and Control,(3):79-83.
Wang Youwu,Yuan Ping,Chen Kejia,al et,2009.Discussion on related problems of tailing dam break[J].Engineering Construction,41(5):35-41.
Xiao Yuntao,Wu Aixiang,Zhai Yonggang,al et,2011.Optimization research on paste backfill drilling system in Huize lead-zinc mine[J].Metal Mine,(4):32-35.
Yang Liuhua,Wang Hongjiang,Wu Aixiang,al et,2016.Effect of flocculation settling on rheological characteristics of full tailings slurry[J].Journal of Central South University(Science and Technology),47(10):3523-3529.
Yang Zhiqiang,Chen Dexin,Gao Qian,al et,2016.Key technologies in long-distance pipeline transportation of filling slurry of coarse aggregate[J].Journal of Guangxi University(Natural Science Edition),41(4):1306-1312.
Yao Zhengong,2008.Optimizing on backfill pipeline transport system in deep mine[J].Mining Research and Development,2(28):7-9,53.
Yuan Yuanxun,2017.Cause analysis and protection measures of tube burst caused by paste filling[J].Mining Technology, 17(4):39-40,101.
Zhang Jingfu,Xu Ming,Gao Lili,al et,2003.Affects of temperature and additives on rheology of cement slurry[J].Drilling Fluid & Completion Fluid,(3):38-41,68.
Zhang Liting,2013.Summary on the dam-break of tailing pond[J].Journal of Hydraulic Engineering,44(5):594-600.
Zhang X X,Qiao D P,2014.The rheological properties and yield stress model of high-density slurry added with coarse sands[J].Applied Mechanics & Materials,580-583:231-237.
Zhang X X,Qiao D P,2015.Simulation and experiment of pipeline transportation of high density filling slurry with coarse aggregates[J].Chinese Journal of Nonferrous Metals,25:258-267.
Zhou Keping,Liu Fuping,Hu Jianhua,al et,2013.Research of tailings dam-break disaster chain and chain-cutting disaster mitigation control technology[J].Journal of Catastrophology,28(3):24-29.
常前发,2003.矿山固体废物的处理与处置[J].矿产保护与利用,(5):38-42.
常前发,2010.我国矿山尾矿综合利用和减排的新进展[J].金属矿山,(3):1-5,61.
杜先锋,2009.注浆工艺在充填钻孔施工固孔固井中的运用[J].新疆有色金属,32(5):29,32.
侯国权,郭利杰,杨超,等,2014.高浓度全尾砂充填料浆流变特性试验研究[J].中国矿业,(增2):238-241.
胡亚军,南世卿,姚振巩,等,2011.全尾砂充填料浆管道输送试验研究[J].采矿技术,11(6):20-22.
黄才启,2011.充填钻孔的关键要素与施工技术[J].探矿工程(岩土钻掘工程),38(10):66-69,73.
林宗寿,2012.水泥工艺学[M].武汉:武汉理工大学出版社.
王凤江,王来贵,2003.尾矿库灾害及其工程整治[J].中国地质灾害与防治学报,(3):79-83.
王又武,袁平,陈珂佳,等,2009.尾矿库溃坝有关问题探讨[J].工程建设,41(5):35-41.
肖云涛,吴爱祥,翟永刚,等,2011.会泽铅锌矿膏体充填钻孔优化研究[J].金属矿山,(4):32-35.
杨柳华,王洪江,吴爱祥,等,2016.絮凝沉降对全尾砂料浆流变特性的影响[J].中南大学学报(自然科学版), 47(10):3523-3529.
杨志强,陈得信,高谦,等,2016.粗骨料充填料浆长距离管道输送关键技术[J].广西大学学报(自然科学版),41(4):1306-1312.
姚振巩,2008.深井充填管道输送系统优化研究[J].矿业研究与开发,2(28):7-9,53.
袁元勋,2017.膏体充填堵管爆管原因分析及防护措施[J].采矿技术,17(4):39-40,101.
张景富,徐明,高丽丽,等,2003.温度及外加剂对水泥浆流变性的影响[J].钻井液与完井液,(3):38-41,68.
张力霆,2013.尾矿库溃坝研究综述[J].水利学报,44(5):594-600.
周科平,刘福萍,胡建华,等,2013.尾矿库溃坝灾害链及断链减灾控制技术研究[J].灾害学,28(3):24-29.
[1] 聂兴信,刘哲伟,高赵祥,程平. 高温金属矿井巷道掘进中组合压冷风筒布位对降温效果的影响[J]. 黄金科学技术, 2022, 30(1): 85-92.
[2] 范晓冬,李响,陶明,尹土兵,李夕兵. 不同热冲击过程花岗岩I型和Ⅱ型断裂特性研究[J]. 黄金科学技术, 2021, 29(6): 834-842.
[3] 李柏锦,李响,王彦,尹土兵,李夕兵. 温度冲击对花岗岩动态拉伸力学性能的影响[J]. 黄金科学技术, 2021, 29(4): 545-554.
[4] 温佳伟,史鹏亮,刘彦兵,张静,屈海浪,李元申,胡博心,缪广. 辽宁二道沟金矿床黄铁矿热电性特征及深部找矿预测[J]. 黄金科学技术, 2020, 28(6): 812-824.
[5] 黄锐,吴娥,吴林. 海拔高度对矿井巷道火灾烟气蔓延规律的影响研究[J]. 黄金科学技术, 2020, 28(2): 293-300.
[6] 李宗楠,罗皖东,郭利杰,许文远. 基于Buckingham方程的大倍线充填料浆输送优化与应用[J]. 黄金科学技术, 2020, 28(1): 90-96.
[7] 黄照东,张德明,刘一锴,张钦礼,王浩. 柠檬酸浸法预处理对磷石膏充填体性能的影响[J]. 黄金科学技术, 2020, 28(1): 97-104.
[8] 肖文丰,陈建宏,陈毅,王喜梅. 基于神经网络与遗传算法的多目标充填料浆配比优化[J]. 黄金科学技术, 2019, 27(4): 581-588.
[9] 徐文峰,饶运章,李尚辉,许威. 含膨润土充填料浆泌水特性分析[J]. 黄金科学技术, 2019, 27(3): 433-439.
[10] 蓝志鹏,王新民,张钦礼,陈秋松. 磁化水对膏体料浆管道输送摩阻损失影响试验研究[J]. 黄金科学技术, 2018, 26(6): 811-818.
[11] 刘冰,李夕兵. 全磷废料高浓度充填两相流环管试验研究[J]. 黄金科学技术, 2018, 26(5): 615-621.
[12] 史采星,郭利杰,陈鑫政. 采场充填料浆流动与离析规律的试验研究[J]. 黄金科学技术, 2018, 26(4): 520-527.
[13] 王新民,胡一波,王石,刘吉祥,陈宇,卞继伟. 超细全尾砂充填配比优化正交试验研究[J]. 黄金科学技术, 2015, 23(3): 45-49.
[14] 张振儒,郭定良. 影响金矿物成色的因素及机理[J]. J4, 1998, 6(4): 24-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 温世庆. AutoCAD 在矿山测量中的应用[J]. J4, 2004, 12(3): 15 -17 .
[2] 张印飞,李晓波. 陕西双王金矿床边界品位和最低工业品位的计算及意义[J]. J4, 2004, 12(6): 23 -26 .
[3] 高浩中, 蔡新平, 张宝林, 王 杰. 黄铁矿的诸多特征与金矿化[J]. J4, 1999, 7(3): 10 -14 .
[4] 刘显凡,倪师军,卢秋霞,金景福,朱赖民. 微细浸染型金矿成矿物源的硅同位素地球化学示踪——以黔西南和桂西北金矿为例[J]. J4, 1998, 6(2): 18 -26 .
[5] 魏刚锋. 滩间山金矿田韧性剪切带和金[J]. J4, 1996, 4(1): 12 .
[6] 张福祥,牛树银,刘成,张晓飞,王铮,赵莎. 胶西北焦家金矿田控矿构造分析[J]. J4, 2012, 20(2): 8 -13 .
[7] 王公海,张俊杰,毕洪涛,刘秋杰,张进贤,尹春伟. 黄金行业设备管理信息化建设的思考[J]. J4, 2008, 16(4): 72 -77 .
[8] 吴小霞, 保广英, 伊有昌, 张芬英. 青海省尕林格富铁矿床地质特征及成因探讨[J]. J4, 2007, 15(4): 36 -40 .
[9] 闰升好. 浅成热液金矿成因研究现状与讨论[J]. J4, 1998, 6(2): 11 -17 .
[10] 古柏 摘编. 涂光炽教授谈金矿床地球化学和金矿地质[J]. J4, 1989, 0(5): 13 .