img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (6): 786-791.doi: 10.11872/j.issn.1005-2518.2020.06.158

• 稀贵金属前沿快讯 • 上一篇    下一篇

微生物法治理含砷酸性矿山废水的研究进展

沈蔡龙1,2(),张广积1,2(),杨超1,2   

  1. 1.中国科学院过程工程研究所,中国科学院绿色过程与工程重点实验室,北京 100190
    2.中国科学院大学化学工程学院,北京 100049
  • 收稿日期:2020-09-08 修回日期:2020-10-30 出版日期:2020-12-31 发布日期:2021-01-29
  • 通讯作者: 张广积 E-mail:clshen@ipe.ac.cn;gjzhang@ipe.ac.cn
  • 作者简介:沈蔡龙(1997-),男,江苏启东人,博士研究生,从事生物冶金与废水处理研究工作。clshen@ipe.ac.cn
  • 基金资助:
    国家重点研发计划项目“‘一带一路’有色金属产业聚集区固废综合利用及集成示范”(2019YFC1904204);国家自然科学基金委员会与欧盟委员会环境生物技术合作研究项目“混合塑料高效降解混菌/多酶的构建与功能调控”(31961133018);中国科学院前沿科学重点研究项目“多晶型药物结晶过程调控和反应结晶器放大”(QYZDJ-SSW-JSC030)

Research Progress of Treating Arsenic-containing Acid Mine Drainage by Biomineralization

Cailong SHEN1,2(),Guangji ZHANG1,2(),Chao YANG1,2   

  1. 1.CAS Key Laboratory of Green Process and Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China
    2.School of Chemical Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2020-09-08 Revised:2020-10-30 Online:2020-12-31 Published:2021-01-29
  • Contact: Guangji ZHANG E-mail:clshen@ipe.ac.cn;gjzhang@ipe.ac.cn

摘要:

综述了目前微生物法治理含砷酸性矿山废水的研究进展,包括硫酸盐还原菌和铁氧化菌矿化除砷技术。硫酸盐还原菌矿化除砷技术的研究较多,但由于碳源成本较高、硫酸盐还原菌的砷耐受性较低以及矿化过程对反应器要求高等,难以得到大规模应用。铁氧化菌矿化除砷技术的研究较少,其矿化形成的不同矿物的稳定性存在争议,目前尚处于实验室研究阶段,但铁氧化菌的砷耐受性高,矿化过程对反应器要求低,且能加速酸性矿山废水中As(Ⅲ)的氧化,发展前景可观。

关键词: 酸性矿山废水, 硫酸盐还原菌, 铁氧化菌, 微生物矿化, 砷污染, 除砷技术

Abstract:

Research progress on the biomineralization technologies of sulfate-reducing bacteria (SRB) and iron-oxidizing bacteria (IOB) for removing arsenic from acid mine drainage (AMD) is reviewed. Although there are numerous studies on the removal of arsenic from AMD using SRB,there remain several challenges in the implementation of this remediation technique on a large scale. These challenges include the choosing of carbon sources,the low-level resistance of SRB to arsenic and the high requirement for reactors. Removing arsenic from AMD using IOB is still at the stage of laboratory research given that the stability of different minerals formed during the biomineralization is not very clear. However,this remediation technique has advantages in accelerating the oxidation of As(Ⅲ),the high-level resistance of IOB to arsenic and the low cost for reactors,which has a promising prospect.

Key words: acid mine drainage, sulfate-reducing bacteria, iron-oxidizing bacteria, biomineralization, arsenic contamination, arsenic removal technology

中图分类号: 

  • X703

图1

SRB治理AMD示意图"

图2

施氏矿物的化学结构示意图"

1 Rodriguez-Lado L,Sun G F,Berg M,et al.Groundwater arsenic contamination throughout China[J].Science,2013,341(6148):866-868.
2 Flora S J S.Handbook of Arsenic Toxicology[M].Holland:Elsevier,2015.
3 梁宗林,秦亚玲,王佩,等.云南省蒙自酸性矿山排水微生物群落结构和功能[J].生物工程学报,2019,35(11):2035-2049.
Liang Zonglin,Qin Yaling,Wang Pei,et al.Microbial community structure and function in acid mine drainage from Mengzi,Yunnan Province[J].Chinese Journal of Biotechnology,2019,35(11):2035-2049.
4 肖细元,陈同斌,廖晓勇,等.中国主要含砷矿产资源的区域分布与砷污染问题[J].地理研究,2008,27 (1):201-212.
Xiao Xiyuan,Chen Tongbin,Liao Xiaoyong,et al.Regional distribution of arsenic contained minerals and arsenic pollution in China[J].Geographical Research,2008,27(1):201-212.
5 Iakovleva E,Mäkilä E,Salonen J,et al.Acid mine drainage(AMD) treatment:Neutralization and toxic elements removal with unmodified and modified limestone[J].Ecological Engineering,2015,81:30-40.
6 张明江,刘兴宇,李益斌,等.一种尾矿库重金属污染的微生物修复方法:CN109967519A[P].2019-07-05.
Zhang Mingjiang,Liu Xingyu,Li Yibin,et al.A microbial method for the remediation of heavy metal pollution in tailing pond:CN109967519A[P].2019-07-05.
7 余飞,万俊锋,赵雅光,等.硫酸盐还原菌SRB除砷的影响因素[J].环境工程学报,2016,10(7):3898-3904.
Yu Fei,Wan Junfeng,Zhao Yaguang,et al.Factors influencing arsenic removal by sulfate-reducing bacteria[J].Chinese Journal of Environmental Engineering,2016,10(7):3898-3904.
8 Battaglia-Brunet F,Crouzet C,Burnol A,et al.Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor[J].Water Research,2012,46(12):3923-3933.
9 Lengke M F,Sanpawanitchakit C,Tempel R N.The oxidation and dissolution of arsenic-bearing sulfides[J].The Canadian Mineralogist,2009,47(3):593-613.
10 Oremland R S,Stolz J F.The ecology of arsenic[J].Science,2003,300(5621):939-944.
11 Nancucheo I,Johnson D B.Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria[J].Microbial Biotechnology,2012,5(1):34-44.
12 Hoeft S E,Kulp T R,Stolz J F,et al.Dissimilatory arsenate reduction with sulfide as electron donor:Experiments with mono lake water and isolation of strain MLMS-1,a chemoautotrophic arsenate respirer[J].Applied and Environmental Microbiology,2004,70(5):2741-2747.
13 Wilkin R,Wallschläger D,Ford R.Speciation of arsenic in sulfidic waters[J].Geochemical Transactions,2003,4(1):1-7.
14 Altun M,Sahinkaya E,Durukan I,et al.Arsenic removal in a sulfidogenic fixed-bed column bioreactor[J].Journal of Hazardous Materials,2014,269:31-37.
15 De Matos L P,Costa P F,Moreira M,et al.Simultaneous removal of sulfate and arsenic using immobilized non-traditional SRB mixed culture and alternative low-cost carbon sources[J].Chemical Engineering Journal,2018,334:1630-1641.
16 狄军贞,李拓达,赵微.硫酸盐还原菌利用不同生物质碳源对酸性矿山废水的处理[J].煤炭学报,2019,44(6):1915-1922.
Di Junzhen,Li Tuoda,Zhao Wei.Treatment acid mine drainage by sulfate reducing bacteria using different biomass carbon sources[J].Journal of China Coal Society,2019,44(6):1915-1922.
17 Zacarias-Estrada O L,Ballinas-Casarrubias L,Montero-Cabrera M E,et al.Arsenic removal and activity of a sulfate reducing bacteria-enriched anaerobic sludge using zero valent iron as electron donor[J].Journal of Hazardous Materials,2020,384:121392.
18 Briones-Gallardo R,Escot Espinoza V M,Cervantes González E.Removing arsenic and hydrogen sulfide production using arsenic-tolerant sulfate-reducing bacteria[J].International Journal of Environmental Science and Technology,2016,14(3):609-622.
19 祝传静,孙晶晶,黄建洪,等.基于硫酸盐还原菌的气提内循环反应器处理酸性矿山废水[J].环境工程学报,2020,14(4):970-976.
Zhu Chuanjing,Sun Jingjing,Huang Jianhong,et al.Treatment of acid mine drainage by a gas stripping internal circulation reactor with sulfate reducing bacteria[J].Chinese Journal of Environmental Engineering,2020,14(4):970-976.
20 修伟.耐砷铁氧化菌的除砷特征及其机理研究[D].北京:中国地质大学(北京),2016.
Xiu Wei.Characteristics and Mechanisms of Arsenic Bioremediation by Arsenic-Resistant Fe(Ⅱ)-oxidizing Baterial in Aqueous Environment[D].Beijing:China University of Geosciences(Beijing),2016.
21 王敏.生物成因黄铁矾合成的影响机制及其在酸性矿山废水治理中的应用研究[D].南京:南京农业大学,2011.
Wang Min.The Mechanism of Jarosite Formation During Ferrous Iron Oxidation by Acidithiobacillus Ferrooxidans and Their Applications to Acid Mine Drainage Treatment[D].Nanjing:Nanjing Agricultural University,2011.
22 Vithana C L.Assessment and Behaviour of Secondary Iron(Ⅲ)Minerals in Acid Sulphate Soil Materials[D].New South Wales:Southern Cross University,2014.
23 周立祥.生物矿化:构建酸性矿山废水新型被动处理系统的新方法[J].化学学报,2017,75(6):552-559.
Zhou Lixiang.Biomineralization: A pivotal process in developing a novel passive treatment system for acid mine drainage[J].Acta Chimica Sinica,2017,75(6):552-559.
24 Qiao X X,Liu L L,Shi J,et al.Heating changes bio-schwertmannite microstructure and arsenic(Ⅲ) removal efficiency[J].Minerals,2017,7(1):9.
25 Jin D C,Wang X M,Liu L L,et al.A novel approach for treating acid mine drainage through forming schwertmannite driven by a mixed culture of Acidiphilium multivorum and Acidithiobacillus ferrooxidans prior to lime neutralization[J].Journal of Hazardous Materials,2020,400:123108.
26 郭爱莲,孙先锋,朱宏莉,等.He-Ne激光、紫外线诱变氧化亚铁硫杆菌及耐砷菌株的选育[J].光子学报,1999,28(8):718-721.
Guo Ailian,Sun Xianfeng,Zhu Hongli,et al.The mutagenesis of Thiobacillus ferrooxidans by He-Ne laser, ultra violet and the breeding of arsenate-tolerant mutant[J].Acta Photonica Sinica,1999,28(8):718-721.
27 方芳,钟宏,江放明,等.嗜酸氧化亚铁硫杆菌的耐砷驯化与浸矿能力[J].中南大学学报(自然科学版), 2013(10):3977-3983.
Fang Fang,Zhong Hong,Jiang Fangming,et al.Domestication for arsenic-tolerant ability and bioleaching of Acidithiobacillus ferrooxidans[J].Journal of Central South University (Science and Technology),2013(10):3977-3983.
28 Asta M P,Cama J,Martínez M,et al.Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications[J].Journal of Hazardous Materials,2009,171(1):965-972.
29 Burton E D,Bush R T,Johnston S G,et al.Sorption of arsenic(V)and arsenic(Ⅲ)to Schwertmannite[J].Environmental Science and Technology,2009,43(24):9202-9207.
30 Zhang Z,Bi X,Li X T,et al.Schwertmannite:Occurrence,properties,synthesis and application in environmental remediation [J].RSC Advances,2018,8(59):33583-33599.
31 Zhao Z X,Jia Y F,Xu L Y,et al.Adsorption and heterogeneous oxidation of As(Ⅲ)on ferrihydrite[J].Water Research,2011,45(19):6496-6504.
32 Hug S J,Leupin O.Iron-catalyzed oxidation of arsenic(Ⅲ)by oxygen and by hydrogen peroxide:pH-dependent formation of oxidants in the fenton reaction[J].Environmental Science and Technology,2003,37(12):2734-2742.
[1] 季常青,黄怀国,张卿,陈启斌. 膜分离技术在矿坑含铜废水资源化中的应用及优化[J]. 黄金科学技术, 2013, 21(5): 102-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[7] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[8] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[9] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[10] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .