img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (4): 558-564.doi: 10.11872/j.issn.1005-2518.2020.04.180

• 采选技术与矿山管理 • 上一篇    下一篇

矿柱爆破回采对胶结充填体损伤影响试验研究

宋春辉1(),李祥龙1,2(),王建国1,宋飞3   

  1. 1.昆明理工大学国土资源工程学院,云南 昆明 650093
    2.云南省中—德蓝色矿山与特殊地下空间开发利用重点实验室,云南 昆明 650093
    3.四川路航建设有限责任公司,四川 成都 610000
  • 收稿日期:2019-11-08 修回日期:2020-04-29 出版日期:2020-08-31 发布日期:2020-08-27
  • 通讯作者: 李祥龙 E-mail:songch1994@163.com;lxl00014002@163.com
  • 作者简介:宋春辉(1994-),男,辽宁朝阳人,硕士研究生,从事工程爆破和岩土工程研究工作。songch1994@163.com
  • 基金资助:
    国家自然科学基金项目“精确延时数(单)孔一响预裂爆破成缝(微破碎带)机理研究”(51564027);北京理工大学爆炸重点实验室开放基金项目“高台阶抛掷爆破岩石破碎及抛掷机理研究”(KFJJ15-14M)

Experimental Study on the Effect of Pillar Blasting Mining on the Damage of Cemented Filling Body

Chunhui SONG1(),Xianglong LI1,2(),Jianguo WANG1,Fei SONG3   

  1. 1.Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    2.Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space,Kunming 650093,Yunnan,China
    3.Sichuan Luhang Construction Co. ,Ltd. ,Chengdu 610000,Sichuan,China
  • Received:2019-11-08 Revised:2020-04-29 Online:2020-08-31 Published:2020-08-27
  • Contact: Xianglong LI E-mail:songch1994@163.com;lxl00014002@163.com

摘要:

为确定井下矿柱爆破回采对胶结充填体的破坏范围,选用大红山铜矿现场胶结充填体及同等强度的矿柱模拟材料,在井下废弃但安全的巷道内开展矿柱爆破回采模型试验,并采用超声波测试及爆后表观裂纹观测的方法,分别从损伤度变化和裂纹扩展2个方面探究爆破荷载下胶结充填体的损伤规律。研究结果表明:爆破荷载下胶结充填体在爆心距为45~125 cm的损伤度明显高于爆心距为145~205 cm的损伤度;胶结充填体处裂纹最长可扩展至71.5 cm;根据试验模型中胶结充填体损伤情况,将其划分为稳定区、损伤区和破坏区,该配比下胶结充填体损伤度0≤D<0.07为稳定区,0.07≤D≤0.22为损伤区,0.22<D≤1为破坏区。

关键词: 爆破回采, 胶结充填体, 声波测试, 模型试验, 损伤范围, 爆心距

Abstract:

Based on the panel mining of Dahongshan Copper Mine,this paper attempts to solve the damage problem of adjacent cemented pillars.In order to determine the damage range of cement piles in the blasting and recovery of underground mines,the on-site cemented backfill of Dahongshan Copper Mine and the same strength of the pillar simulation materials were used to carry out the mine column blasting simulation test in the underground abandoned but safe roadway.Ultrasonic testing and post-explosion apparent crack observation method were used to investigate the damage law of cemented backfill under blasting load from two aspects of damage degree and crack propagation.The results show that the damage degree of the cemented backfill at the blasting distance R is 45~125 cm that is higher than that of the blasting core R is 145~205 cm;The crack at the cemented backing can be extended to 71.5 cm;In the model,the damage of cemented backfill is divided into stable zone,damage zone and failure zone.The damage degree of cemented backfill is 0≤D<0.07 in the stable zone,0.07≤D≤0.22 in the damaged zone,and 0.22<D≤1 in the failure zone.

Key words: blasting mining, cemented filling body, acoustic wave test, model test, damage range, blasting center distance

中图分类号: 

  • TD853.34

图1

模具设计图"

图2

加工后模具实物图"

表1

试验盘区充填体配比情况"

配比强度参数变形参数
水泥添加量/(kg·m-3浓度/%尾砂添加/(kg·m-3水添加量/(kg·m-3内聚力/MPa抗压强度/MPa抗拉强度/MPa体积模量/MPa剪切模量/MPa
150721 2175320.21.020.15218.4492.48

表2

435中段矿体力学参数"

岩石类型抗压强度/MPa湿抗拉强度/MPa湿剪切强度弹性模量/GPa泊松比
自然含水状态湿抗压强度内聚力/MPa内摩擦角
20线I2矿体72.751.65.18.445°47′86.80.26

表3

模型中模拟矿体配比"

材料比例质量/kg材料比例质量/kg
水泥1100.00粉煤灰0.5151.00
河沙2.79278.86硅粉0.17617.58
0.3636.00减水剂1.5%1.50

图3

浇筑后模型"

图4

声波测点布置图"

表5

爆破前后模型不同位置的声波值"

测点模型1模型2模型3模型4
爆破前声波值爆破后声波值爆破前声波值爆破后声波值爆破前声波值爆破后声波值爆破前声波值爆破后声波值
1#1 7421 2861 5601 2101 8001 4371 7671 445
2#1 5901 3451 6701 4621 5551 3061 8071 597
3#1 8011 6521 7901 6661 6371 4721 7441 576
4#1 7201 6161 5901 4851 7561 6251 6251 487
5#1 7361 6381 7601 6661 7861 6831 6671 568
6#1 7451 6601 7001 6231 7561 7011 6131 596
7#1 6891 6211 5701 5101 6461 5961 7421 697
8#1 7141 6791 6401 5891 7271 6671 5961 526
9#1 5721 5311 7701 6881 6001 5631 7961 758

表6

模型不同位置损伤度"

测点损伤值平均值
模型1模型2模型3模型4
1#0.4550.3980.3630.3310.387
2#0.2840.2340.2950.2190.258
3#0.1590.1340.1910.1830.167
4#0.1170.1280.1440.1630.138
5#0.1100.1040.1120.1150.110
6#0.0950.0890.0620.0210.067
7#0.0790.0750.0600.0510.066
8#0.0400.0610.0680.0860.064
9#0.0510.0910.0460.0420.058

图5

损伤度与爆心距的关系"

图6

裂纹扩展图"

1 严鹏,邹玉君,卢文波,等.基于爆破振动监测的岩石边坡开挖损伤区预测[J].岩石力学与工程学报,2016,35(3):538-548.
Yan Peng,Zou Yujun,Lu Wenbo,et al.Predicting the damage zone of rock slopes under blasting excavation based on vibration monitoring[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(3):538-548.
2 贾虎,徐颖.岩体开挖爆炸应力损伤范围研究[J].岩石力学与工程学报,2007,26(增1):3489-3492.
Jia Hu,Xu Ying.Study on stress damage zone in excavation of rock mass[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(Supp.1):3489-3492.
3 宋卫东,汪杰,谭玉叶,等.三轴加—卸载下分层充填体能耗及损伤特性[J].中国矿业大学学报,2017,46(5):1050-1057.
Song Weidong,Wang Jie,Tan Yuye,et al.Energy consumption and damage characteristics of stratified backfill under triaxial loading and unloading[J].Journal of China University of Mining and Technology,2017,46(5):1050-1057.
4 徐文彬,曹培旺,程世康.深地充填体断裂特性及裂纹扩展模式研究[J].中南大学学报(自然科学版),2018,49(10):2508-2518.
Xu Wenbin,Cao Peiwang,Cheng Shikang.Study on fracture characteristics and crack propagation mode of cemented backfill in deep mine[J].Journal of Central South University(Science and Technology),2018,49(10):2508-2518.
5 朱鹏瑞,宋卫东,曹帅,等.爆破动载下胶结充填体的张拉力学响应机制[J].采矿与安全工程学报,2018,35(03):605-611.
Zhu Pengrui,Song Weidong,Cao Shuai,et al.Tensile mechanical response mechanism of cemented backfills under blasting load[J].Journal of Mining and Safety Engineering,2018,35(3):605-611.
6 刘志祥,李夕兵.尾砂胶结充填体力学试验及损伤研究[J].金属矿山,2004,34(11):22-24.
Liu Zhixiang,Li Xibing.Mechanics test and damage study on cemented tailing filling[J].Metal Mine,2004,34(11):22-24.
7 费鸿禄,杨卫风,张国辉,等.金属矿山矿柱回采时爆破荷载下采空区的围岩稳定性[J].爆炸与冲击,2013,33(4):344-350.
Fei Honglu,Yang Weifeng,Zhang Guohui,et al.Surrounding rock stability of mined-out area under blast loading in metal mine pillar robbing[J].Explosion and Shock Waves,2013,33(4):344-350.
8 Hu K X,Kemeny J.A fracture mechanics analysis of the effect of backfill on the stability of cut and fill mine workings[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1994,31(3):231-241.
9 Liu Z X,LI X B,Dai T G,et al.On damage model of cemented tailings backfill and its match with rock mass[J].Rock and Soil Mechanics,2006,27(9):1442-1446.
10 Yu G B,Yang P,Chen Y Z.Study on damage constitutive model of cemented tailings backfill under uniaxial compression[J].Applied Mechanics and Materials,2013,353-356:379-383.
11 Taylor L M,Chen E P,Kuszmaul J S.Microcrack-induced damage accumulation in brittle rock under dynamic loading[J].Computer Methods in Applied Mechanics and Engineering,1986,55(3):301-320.
12 陈明,卢文波.爆炸应力波对新浇混凝土衬砌的影响研究[J].岩土力学,2008,29(2):455-459.
Chen Ming,Lu Wenbo.The influence of explosive stress wave on young concrete lining[J].Rock and Soil Mechanics,2008,29(2):455-459.
13 邓代强,杨耀亮,姚中亮.拉压全过程充填体损伤演化本构方程研究[J].采矿与安全工程学报,2006,23(4):485-488.
Deng Daiqiang,Yang Yaoliang,Yao Zhongliang.Research on constitutive equation of damage evolution of backfill based on the full tensile and compressive process[J].Journal of Mining and Safety Engineering,2006,23(4):485-488.
14 赵明阶,徐蓉.岩石损伤特性与强度的超声波速研究[J].岩土工程学报,2000,22(6):720-722.
Zhao Mingjie,Xu Rong.The rock damage and strength study based on ultrasonic velocity[J].Chinese Journal of Geotechnical Engineering,2000,22(6):720-722.
15 李云,刘霁.岩石中浅孔爆破特性的数值模拟[J].中南大学学报(自然科学版),2012,43(4):1519-1522.
Li Yun,Liu Ji.Numerical simulation on mechanical properties of shallow-hole blasting in rocks[J].Journal of Central South University(Science and Technology),2012,43(4):1519-1522.
16 王启睿,孔福利,范俊奇,等.高强砂浆材料爆炸作用下破坏分区试验研究[J].地下空间与工程学报,2018,14(6):1505-1511.
Wang Qirui,Kong Fuli,Fan Junqi,et al.Experimental study for destructive zone of high-strength mortar material under explosion effect[J].Chinese Journal of Underground Space and Engineering,2018,14(6):1505-1511.
17 张文煊,卢文波.龙滩水电站地下厂房开挖爆破损伤范围评价[J].工程爆破,2008,14(2):1-7.
Zhang Wenxuan,Lu Wenbo.Evaluation of blast-induced damage zone in excavation blasting of Longtan underground workshop[J].Engineering Blasting,2008,14(2):1-7.
18 中华人民共和国国家发展和改革委员会.水工建筑物岩石基础开挖工程施工技术规范:DL/T 5389-2007[M].北京:中国电力出版社,2009.
National Development and Reform Commission of the People’s Republic of China.Technical Specifications for Rock Foundation Excavation Engineering of Hydraulic Structures: DL/T 5389-2007[M].Beijing:China Electric Power Press,2009.
19 阳生权.爆破地震累积效应理论和应用初步研究[D].长沙:中南大学,2002.
Yang Shengquan.Study on Theory and Application of BlastingVibration Cumulative Effeets[D].Changsha:Cen-tral South University,2002.
20 褚怀保,杨小林,叶红宇,等.新浇混凝土爆破振动损伤累积规律模拟试验研究[J].煤炭学报,2018,43(9):2469-2475.
Chu Huaibao,Yang Xiaolin,Ye Hongyu,et al.Simulation experimental research on damage accumulation law of new concrete under multiple blasting vibration loads[J].Journal of China Coal Society,2018,43(9):2469-2475.
21 刘连生,钟清亮,闫雷,等.频繁生产爆破加载下饱水岩体累积损伤效应声波测试研究[J].黄金科学技术,2018,26(6):750-760.
Liu Liansheng,Zhong Qingliang,Yan Lei,et al.Measurement of sound waves to study cumulative damage effect on saturated rock under frequent production blast loading[J].Gold Science and Technology,2018,26(6):750-760.
22 李允忠,王志亮,黄佑鹏,等.循环爆破载荷下岩石累积损伤效应研究[J].爆破,2019,36(2):47-53.
Li Yunzhong,Wang Zhiliang,Huang Youpeng,et al.Numerical study of cumulative damage effect of rock under cyclic blast loading[J].Blasting,2019,36(2):47-53.
[1] 汪海旭, 宗琦, 汪海波, 王梦想. 煤矿下山巷道水与空气不耦合装药爆破技术对比研究[J]. 黄金科学技术, 2019, 27(5): 747-754.
[2] 孙冰,罗瑜,谢杰辉,曾晟. N型组合节理类岩体单轴压缩破坏试验[J]. 黄金科学技术, 2019, 27(4): 548-556.
[3] 刘连生,钟清亮,闫雷,钟文,梁龙华. 频繁生产爆破加载下饱水岩体累积损伤效应声波测试研究[J]. 黄金科学技术, 2018, 26(6): 750-760.
[4] 叶永飞,张雅楠,李士超,曹世荣,韩建文,王晓军. 循环载荷下胶结充填体损伤声发射表征[J]. 黄金科学技术, 2018, 26(6): 819-825.
[5] 李文臣,郭利杰,陈鑫政,李宗楠,李欣. 尾砂胶结充填体三维空间强度分布相似模拟试验研究[J]. 黄金科学技术, 2018, 26(4): 528-534.
[6] 王新民, 赵茂阳, 荣帅, 王浩, 张云海. APAM对全尾砂胶结充填体早期强度影响研究[J]. 黄金科学技术, 2018, 26(3): 305-311.
[7] 曹世荣,韩建文,李永欣,王晓军 *,冯萧,卓毓龙. 基于声发射概率密度函数固废胶结充填体损伤分析[J]. 黄金科学技术, 2017, 25(6): 92-98.
[8] 曹世荣,肖伟晶,李永欣,王晓军,卓毓龙,冯萧. 循环载荷下块石胶结充填体声发射特性研究[J]. 黄金科学技术, 2017, 25(3): 92-97.
[9] 田波, 李殿辉. 提高充填体强度的技术措施[J]. J4, 2005, 13(1-2): 51-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[2] 衣存昌, 臧恩光. 黑龙江老柞山金矿成矿规律及深部找矿探讨[J]. J4, 2010, 18(4): 58 -61 .
[3] 刘金鹏, 刘万强, 李定坤, 李天栋. 金亭岭金矿竖井提升系统的合理化改造[J]. J4, 2010, 18(4): 80 -81 .
[4] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[5] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[6] 张渊, 张洪喜. 山东黄埠岭金矿7号脉地质特征及控矿机理研究[J]. J4, 2010, 18(4): 12 -16 .
[7] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[8] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .
[9] 原冬成, 徐小凤. 山东曹家埠金矿床的成矿机理与找矿前景[J]. J4, 2010, 18(4): 47 -49 .
[10] 郁东良. 青海省满丈岗地区金地球化学特征及找矿方向探索[J]. J4, 2008, 16(1): 52 -55 .