img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (3): 345-352.doi: 10.11872/j.issn.1005-2518.2020.03.026

• 采选技术与矿山管理 • 上一篇    下一篇

深部区域采矿时序的地压调控卸荷效应研究

于世波1,2,3(),杨小聪1,2,3(),原野1,3,王志修1,3   

  1. 1.矿冶科技集团有限公司,北京 102628
    2.北京科技大学土木与资源工程学院,北京 100083
    3.国家金属矿绿色开采国际联合研究中心,北京 102628
  • 收稿日期:2019-12-31 修回日期:2020-03-10 出版日期:2020-06-30 发布日期:2020-07-01
  • 通讯作者: 杨小聪 E-mail:yushibo@bgrimm.com;yxcong@bgrimm.com
  • 作者简介:于世波(1985-),男,山东诸城人,博士研究生,从事深部采矿岩石力学与工程灾害控制方面的研究工作。yushibo@bgrimm.com
  • 基金资助:
    国家重点研发计划项目“深部金属矿协同开采理论与技术”(2016YFC0600709);“深部大矿段采动环境监测及地压动态调控技术”(2017YFC0602904)

Research on Destress Effect of Ground Pressure Control for the Time-space Mining Sequence at Depths

Shibo YU1,2,3(),Xiaocong YANG1,2,3(),Ye YUAN1,3,Zhixiu WANG1,3   

  1. 1.BGRIMM Technology Group,Beijing 102628,China
    2.School of Civil and Resource Engineering,University of Science and Technology Beijing,Beijing 100083,China
    3.National Centre for International Research on Green Metal Mining,Beijing 102628,China
  • Received:2019-12-31 Revised:2020-03-10 Online:2020-06-30 Published:2020-07-01
  • Contact: Xiaocong YANG E-mail:yushibo@bgrimm.com;yxcong@bgrimm.com

摘要:

深部区域采矿时序是深部地压管控的重要战略方法之一,其卸荷力学效应与回采时序密切相关。针对构建的深部由中心向四周回采的立体式大区域开采力学模型,基于应力转移过程和岩爆应力风险特征,研究从单个采场到多个采场回采过程中的应力演化规律和岩爆应力风险变化规律。研究结果表明:深部从中心到四周的立体式回采顺序能够实现采矿作业区高应力的逐步转移和应力风险的渐进推移,深部区域采矿时序的地压调控卸荷效应是通过回采时序的合理设置实现期望的卸荷应力环境再造和深部采矿应力风险的渐进转移过程行为。基于数值模拟与微震监测相结合的互馈分析技术,实现大区域数值模拟与微震监测大数据的高度融合、实时动态分析与跟踪评价,是深部区域采矿时序的地压调控卸荷效果评价的有效方法。深部开采区域时序调控卸荷效应的本质是主动创造高应力环境中低值应力卸荷区思想,这一思想已在加拿大Nickel Rim South矿得到了实践应用,取得良好的卸荷效果并实现了地压的合理管控,对于我国深部、超深部开采具有重要的指导意义。

关键词: 深部区域, 应力转移, 采矿时序, 数值模拟, 岩爆应力风险, 卸荷

Abstract:

The regional time-space mining sequence is one of the important strategic methods for underground pressure management at depths and destress mechanical effect is closely related to the time-space mining sequence itself. Aiming at the large-area mining mechanical model of three-dimensional mining sequence from the centre to the periphery at depths, based on the stress transfer process and characteristics of rockburst stress hazard, the stress evolution laws and changes of rockburst stress hazard were studied during the mining process from a single stop to multiple stopes.The research results show that the three-dimensional mining sequence from the center to the periphery at depths can gradually realize the gradual transfer of high stress and the gradual transition of stress hazard around the mining operation area.The destress effect of ground pressure control for the time-space mining sequence at depths is to achieve the desired destress environment reconstruction and the progressive transfer of the stress hazard through the reasonable setting of the three-dimensional mining sequence.The mutual feedback analysis technology based on the combination of numerical simulation and microseismic monitoring could realize high integration of large area numerical simulation and big data of microseismic monitoring, real-time dynamic analysis and tracking evaluation, and it is an effective method to evaluate the destress effect of ground pressure control for the time-space mining sequence at depths.The essence of the destress effect of ground pressure control for the time-space mining sequence at depths is the idea to actively create low stress destress zone in the high-stress environment.This idea had been applied at Nickel Rim South mine in Canada, which had achieved a good destress effect and realized reasonable management for ground control. It is believed that this idea has important guiding significance for deep and ultra-deep mining in China.

Key words: deep region, stress migration, time-space mining sequence, numerical simulation, rockburst stress hazard, destress

中图分类号: 

  • TD853
1 Hedley D G F. Rockburst Handbook for Ontario Hardrock Mines[R].Ottawa:Minister of Supply and Services Canada,1992.
2 谢和平,高峰,鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,2015,34(11):2162-2178.
Xie Heping,Gao Feng,Ju Yang.Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2162-2178.
3 谢和平. “深部岩体力学与开采理论”研究构想与预期成果展望[J]. 工程科学与技术,2017,49(2):1-16.
Xie Heping. Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Sciences,2017,49(2):1-16.
4 何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803-2813.
He Manchao,Xie Heping,Peng Suping,et al.Study on rock mechanics in deep mining engineering[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803-2813.
5 于世波,吴春平,王志修,等. 深井复杂地质条件下综合采掘技术研究与应用[R]. 北京:北京矿冶科技集团有限公司,2018.
Yu Shibo,Wu Chunping,Wang Zhixiu,et al.Research and application of comprehensive mining technology under complex geological conditions at depths[R]. Beijing:BGRIMM Technology Group,2018.
6 胡建华,雷涛,周科平,等. 基于采矿环境再造的开采顺序时变优化研究[J]. 岩土力学,2011,32(8):2517-2522.
Hu Jianhua,Lei Tao,Zhou Keping,et al.Time-varying optimization study of mining sequence based on reconstructed mining environment[J]. Rock and Soil Mechanics,2011,32(8):2517-2522.
7 刘晓明,杨承祥,罗周全. 深井开采回采顺序数值模拟优化研究[J]. 南华大学学报(自然科学版),2008,22(4):15-21.
Liu Xiaoming,Yang Chengxiang,Luo Zhouquan.Numerical simulation optmization of mining sequence in deep mining[J].Journal of University of South China (Science and Technology),2008,22(4):15-21.
8 卢萍. 深部采场结构参数及回采顺序优化研究[D]. 重庆:重庆大学,2008.
Lu Ping.Optimization of Deep Stope Structure Parameters and Mining Sequence[D]. Chongqing:Chongqing University,2008.
9 戴兴国,唐凌,陈增剑,等. 基于λ模糊测度和Choquet积分的回采方案动态优选[J]. 黄金科学技术,2016,24(2):1-7.
Dai Xingguo,Tang Ling,Chen Zengjian,et al.Dynamic optimization of stoping scheme based on λ fuzzy measure and Choquet integral[J].Gold Science and Technology,2016,24(2):1-7.
10 邓红卫,杨懿全,邓畯仁,等. 采空区下方高应力环境下深部矿体回采时序研究[J]. 黄金科学技术,2017,25(2):62-69.
Deng Hongwei,Yang Yiquan,Deng Junren,et al. Study on mining sequence of deep orebody under high stress environment below goaf[J]. Gold Science and Technology,2017,25(2):62-69.
11 Morissette P,Hadjigeorgiou J,Punkkinen A.Characterisation of burst-prone grounds at Vale’s Creighton Mine[J]. Mining Technology,2017,126(3):123-138.
12 Stacey T R,Page C H.Practical Handbook for Underground Rock Mechanics[M].Clausthal-Zellerfeld:Trans Tech Publications,1986.
13 Wiles T. Loading system stiffness—A parameter to evaluate rockburst potential[C]//Hudyma M,Potvin Y. Proceedings of the First International Seminar on Deep and High Stress Mining.Perth:Australian Centre for Geomechanics,2002.
14 Cotesta L,O’connor C P,Brummer R K,et al. Numerical modelling and scientific visualisation—Integration of geomechanics into modern mine designs[C]//Hudyma M,Potvin Y.Proceedings of the Seventh International Seminar on Deep and High Stress Mining.Perth:Australian Centre for Geomechanics,2014.
15 Ryder J A. Excess shear stress in the assessment of geologically hazardous situations[J]. Journal of the South African Institute of Mining and Metallurgy,1988,88(1):27-39.
16 Itasca Consulting Group Inc.. FLAC3D,version 6.0[CP/DK]. Itasca Consulting Group,Inc.,2017.
17 MAP3D International Ltd.MAP3D,version 65[CP/DK]. MAP3D International Ltd.,2017.
18 Woodward K R,Tierney S R. Seismic hazard estimation using databases with bimodal frequency-magnitute beha-viour[C]// Hudyma M,Potvin Y. Proceedings of the First International Conference on Underground Mining Technology.Perth:Australian Centre for Geomechanics,2017.
19 Dineva S,Boskovic M. Evolution of seismicity at Kiruna Mine[C]//Wesseloo J. Proceedings of the Eighth International Seminar on Deep and High Stress Mining.Perth:Australian Centre for Geomechanics,2017.
20 Carusone O T S. Interpretation of Rock Mass Yield Using Apparent Stress of Microseismic Events—Examples from Glencore’s Nickel Rim South Mine,Sudbury,Ontario[D].Ontario:Laurentian University,2018.
[1] 聂兴信, 甘泉, 高建, 冯珊珊. 协同理念下岩金矿脉群连续回采顶板安全跨度研究[J]. 黄金科学技术, 2020, 28(3): 337-344.
[2] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[3] 黄锐,吴娥,吴林. 海拔高度对矿井巷道火灾烟气蔓延规律的影响研究[J]. 黄金科学技术, 2020, 28(2): 293-300.
[4] 田龙,周智勇,陈建宏. 配备辅助通风的高温矿井采掘区温度分布数值模拟[J]. 黄金科学技术, 2020, 28(1): 61-69.
[5] 张钦礼,蒋超余,高翔,刘斌. 大断面六角形进路采矿法结构参数优化研究[J]. 黄金科学技术, 2020, 28(1): 42-50.
[6] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[7] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[8] 田军, 刘建坡, 杨勇, 张长银. 进路充填法爆破扰动诱发充填体破坏规律研究[J]. 黄金科学技术, 2019, 27(5): 687-695.
[9] 宋恩祥, 李强, 张静, 彭康. 蚀变带内矿体开采中人工假底的应用研究[J]. 黄金科学技术, 2019, 27(5): 722-730.
[10] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[11] 梁瑞,俞瑞利,周文海,黄小彬,王建勇,熊征宇. 空气间隔装药爆破模型在矿房回采中的应用[J]. 黄金科学技术, 2019, 27(3): 358-367.
[12] 秦世康,陈庆发,尹庭昌. 岩石与岩体冻融损伤内涵区别及研究进展[J]. 黄金科学技术, 2019, 27(3): 385-397.
[13] 刘锋,王昭坤,马凤山,王波,王剑波,董春蕾. 矿山深部卸压技术研究现状及展望[J]. 黄金科学技术, 2019, 27(3): 425-432.
[14] 王春,王成,熊祖强,程露萍,王怀彬. 动力扰动下深部出矿巷道围岩的变形特征[J]. 黄金科学技术, 2019, 27(2): 232-240.
[15] 方传峰,王晋淼,李剡兵,贾明涛. 基于PFC2D-DFN的自然崩落法数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 189-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张文钊, 徐述平. 招平断裂带成矿特征与找矿靶区[J]. J4, 2006, 14(2): 1 -10 .
[2] 黄忠军,王贵春,高荣. 内蒙古东乌旗阿吉勒金及多金属矿地质特征及找矿标志[J]. J4, 2011, 19(3): 22 -29 .
[3] 徐欢,窦洪伟,张正虎,张志强. 青海鄂拉山口银铅锌矿床成矿地质特征及找矿标志[J]. J4, 2012, 20(1): 71 -77 .
[4] 陈芳芳,张亦飞,薛光. 黄金冶炼污染治理与废物资源化利用[J]. J4, 2011, 19(2): 67 -73 .
[5] 王吉青,王苹,赵晓娟,林乡伟. 黄金生产尾矿综合利用的研究与应用[J]. J4, 2010, 18(5): 87 -89 .
[6] 贺秋利,张红晨,宋鹏,张宗超,郭垚嘉,王立考,武鹏. 广西袍里卡林型金矿床地质特征及找矿标志[J]. 黄金科学技术, 2013, 21(6): 48 -52 .
[7] 杨宝荣, 杨小斌. 青海都兰果洛龙洼金矿床地质特征及控矿因素浅析[J]. J4, 2007, 15(1): 26 -30 .
[8] 谢覃江. 云南省人头箐金矿床地质特征及成因探讨[J]. 黄金科学技术, 0, (): 0 .
[9] 周坤,郑立明. 最近距离法在贵金属矿体圈定中的应用——以南非某层状铂矿为例[J]. 黄金科学技术, 2013, 21(3): 55 -58 .
[10] 谢敏雄,李政要,林属勇,迟晓鹏,亓传铎. 提高选矿厂磨矿系统效能的技术改造及应用研究[J]. 黄金科学技术, 2012, 20(6): 65 -68 .