黄金科学技术 ›› 2020, Vol. 28 ›› Issue (1): 61-69.doi: 10.11872/j.issn.1005-2518.2020.01.099

• 采选技术与矿山管理 • 上一篇    下一篇



  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2019-06-27 修回日期:2019-09-24 出版日期:2020-02-29 发布日期:2020-02-26
  • 通讯作者: 周智勇;
  • 作者简介:田龙(1995-),男,河南商丘人,硕士研究生,从事矿井通风降温方面的研究工作。
  • 基金资助:

Numerical Simulation of Temperature Distribution in Mining Area of High Temperature Mine with Auxiliary Ventilation

Long TIAN(),Zhiyong ZHOU(),Jianhong CHEN   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2019-06-27 Revised:2019-09-24 Online:2020-02-29 Published:2020-02-26
  • Contact: Zhiyong ZHOU;



关键词: 掘进巷道, 矿井通风, 辅助通风, 热灾害, 矿井降温, 数值模拟


With the mining activities going deep into the ground,the temperature environment of mining is worse because of the increase of rock temperature and air self compression heat.High temperature environment has seriously affected the development of underground mining.Air ventilation alone is not enough to remove the heat produced by surrounding rock,mining equipment and blasting.In order to reduce the temperature of driving tunnel,it is necessary to redesign the ventilation mode of mine.In this paper,the numerical simulation of the effect of adding auxiliary ventilation facilities on mine ventilation cooling was carried out.Through the establishment of numerical model,the paper set up whether there are auxiliary ventilation facilities,different length of auxiliary ventilation facilities,different distance between auxiliary ventilation facilities and the wall. After optimizing the parameters of auxiliary ventilation facilities,the paper set up conditions such as different inlet wind speed to analyze the cooling condition of driving tunnel.Through the analysis of the air velocity in the driving tunnel,we can preliminarily judge whether the air flow of the air inlet is well into the vicinity of the driving face.Through the temperature distribution of the tunnel section and the average temperature change curve of the cross section of the driving tunnel,we can directly reflect the change of the temperature of the driving tunnel.The results show that in the tunnel without auxiliary ventilation facilities,the air-conditioning flow seldom enters into the driving tunnel.By increasing the air speed of the air inlet alone,the cold air flow can’t flow into the working face more,and increasing the air speed can’t obtain significant cooling effect.By adding auxiliary ventilation facilities,the air-conditioning flow under the guidance of auxiliary ventilation facilities flows into the driving face more.The effect of ventilation and cooling is obviously improved.In the case of adding auxiliary ventilation facilities,with the increase of the length of auxiliary ventilation facilities,the cooling effect of driving roadway is getting better and better at first, but when the length of auxiliary ventilation facilities increases to a certain extent,the cooling effect of ventilation begins to decline.Increasing the distance between auxiliary ventilation facilities and walls can significantly improve the cooling effect of ventilation.In the case of the length of auxiliary ventilation facilities and auxiliary ventilation facilities and walls when the distance between the walls is fixed,the cooling effect can be improved by increasing the inlet air speed,but the cooling effect is not obvious with the increase of the air speed.The research results are helpful to give full play to the role of auxiliary ventilation facilities,effectively reduce the high temperature in the driving tunnel,and have certain reference significance for the ventilation and cooling design of the mine.

Key words: drivage roadway, mine ventilation, auxiliary ventilation, thermal disaster, mine cooling, numerical simulation


  • TD72








时间属性稳态最大迭代步数4 000












平均温度随辅助通风设施长度的变化(v=3 m/s,x=0.4 m)"








平均温度随辅助通风设施与墙壁距离的变化(v=3 m/s,BL=9 m)"







1 Abdelaziz E A,Saidur R,Mekhilef S. A review on energy saving strategies in industrial sector[J]. Renewable and Sustainable Energy Reviews,2011,15:50-68.
2 Vosloo J,Liebenberg L,Velleman D. Case study: Energy savings for a deep-mine water reticulation system[J]. Apply Energy,2012,92:328-335.
3 李瑞. 深井掘进巷道热灾害预测模型研究[D]. 西安:西安科技大学,2009.
Li Rui. Study on Heat-calamity Forecast Model in Drivage Roadway of Deep Shaft[D]. Xi’an: Xi’an University of Science and Technology,2009.
4 张立新. 高温矿井温度场演化规律与降温技术研究[D]. 阜新:辽宁工程技术大学,2014.
Zhang Lixin.Study on Cooling Technology and Evolutional Law of Temperature Field in High Temperature Mine[D]. Fuxin:Liaoning Technical University,2014.
5 Sasmito A P. Computational evaluation of thermal management strategies in an underground mine[J]. Applied Thermal Engineering,2015,90(5):1144-1150.
6 刘何清. 高温矿井井巷热质交换理论及降温技术研究[D]. 长沙:中南大学,2009.
Liu Heqing. The Study of Heat and Mass Transfer Theory and Cooling Technology in the Shaft and Runnel that in the High-Temperature Mine[D]. Changsha:Central South University,2009.
7 Wala A M,Vytlia S,Taylor C D,et al. Mine face ventilation: A comparison of CFD results against benchmark experiments for the CFD code validation[J]. Mining Engineering,2007,59(10):1-7.
8 Parra M T,Villafruela J M,Castro F. Numerical and experimental analysis of different ventilation systems in deep mines[J].Building and Environment,2006,41(2):87-93.
9 Hargreaves D M,Lowndes I S. The computational modeling of the ventilation flows within a rapid development drivage[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,2007,22(2):150-160.
10 Zhou Z Y,Hu P,Qi C,et al. The influence of ventilation arrangement on the mechanism of dust distribution in Woxi pithead[J]. Shock and Vibration,2018,10:1-13.
11 Torano J,Torno S,Menéndez M. Auxiliary ventilation in mining roadways driven with roadheaders:Validated CFD modelling of dust behaviour[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,2011,26(1):201-210.
12 Kurnia J C,Sasmito A P,Mujumdar A S. Dust dispersion and management in underground mining faces[J]. International Journal of Mining Science and Technology,2014,24(1):39-44.
13 Kurnia J C,Sasmito A P,Hassani F,et al. Introduction and evaluation of a novel hybrid brattice for improved dust control in underground mining faces: A computational study[J]. International Journal of Mining Science and Technology,2015,25(4):537-543.
14 Park J,Park S,Lee D K.CFD modeling of ventilation ducts for improvement of air quality in closed mines[J]. Geosystem Engineering,2016,19(4):177-187.
15 Sasmito A P,Birgersson E,Ly H C,et al. Some approaches to improve ventilation system in underground coal mines environment——A computational fluid dynamic study[J]. Tunnelling and Underground Space Technology,2013,34: 82-95.
16 李杰林,周科平,邓红卫,等.深井高温热环境的数值评价[J]. 中国安全科学学报,2007,17(2):61-65.
Li Jielin,Zhou Keping,Deng Hongwei,et al. Numerical evaluation of thermal environment with high temperature in deep mine [J]. China Safety Science Journal,2007,17(12):61-65.
17 高建良,魏平儒.掘进巷道风流热环境的数值模拟[J]. 煤炭学报,2006,31(2):201-205.
Gao Jianliang,Wei Pingru.Numerical simulation of the thermal environment at working face of diving airway[J]. Journal of China Coal Society,2006,31(2):201-205.
18 张树光,贾宝新.热害矿井气流与围岩热交换的数值模拟[J]. 科学技术与工程,2006,6(24):3823-3825.
Zhang Shuguang,Jia Baoxin. Numerical simulation of heat exchange between air and surrounding rock in thermal hazard mine[J]. Science Technology and Engineering,2006,6(24):3823-3825.
19 Kurnia J C,Sasmito A P,Mujumdar A S. CFD simulation of methane dispersion and innovative methane management in underground mining faces[J]. Applied Mathematical Modelling,2014,38(14):3467-3484.
20 Hasheminasab F. Numerical simulation of methane distribution in development zones of underground coal mines equipped with auxiliary ventilation[J].Tunnelling and Underground Space Technology,2019 89(6):68-77.
[1] 张钦礼,蒋超余,高翔,刘斌. 大断面六角形进路采矿法结构参数优化研究[J]. 黄金科学技术, 2020, 28(1): 42-50.
[2] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[3] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[4] 田军, 刘建坡, 杨勇, 张长银. 进路充填法爆破扰动诱发充填体破坏规律研究[J]. 黄金科学技术, 2019, 27(5): 687-695.
[5] 宋恩祥, 李强, 张静, 彭康. 蚀变带内矿体开采中人工假底的应用研究[J]. 黄金科学技术, 2019, 27(5): 722-730.
[6] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[7] 梁瑞,俞瑞利,周文海,黄小彬,王建勇,熊征宇. 空气间隔装药爆破模型在矿房回采中的应用[J]. 黄金科学技术, 2019, 27(3): 358-367.
[8] 秦世康,陈庆发,尹庭昌. 岩石与岩体冻融损伤内涵区别及研究进展[J]. 黄金科学技术, 2019, 27(3): 385-397.
[9] 刘锋,王昭坤,马凤山,王波,王剑波,董春蕾. 矿山深部卸压技术研究现状及展望[J]. 黄金科学技术, 2019, 27(3): 425-432.
[10] 王春,王成,熊祖强,程露萍,王怀彬. 动力扰动下深部出矿巷道围岩的变形特征[J]. 黄金科学技术, 2019, 27(2): 232-240.
[11] 方传峰,王晋淼,李剡兵,贾明涛. 基于PFC2D-DFN的自然崩落法数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 189-198.
[12] 吕闹,汪海波. 厚硬顶板弱化前后垮落致灾数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 257-264.
[13] 王从陆,李童. 基于Ventsim的深井线性热源对有效通风量的影响分析[J]. 黄金科学技术, 2019, 27(2): 271-277.
[14] 李响,怀震,李夕兵,张倬瑶. 基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究[J]. 黄金科学技术, 2019, 27(1): 41-51.
[15] 陈冲,李夕兵,冯帆. 诱导巷道的围岩松动破坏区数值研究[J]. 黄金科学技术, 2018, 26(6): 771-779.
Full text



[1] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[2] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .
[3] 刘东海, 刘新会. 西秦岭寨上特大型金矿床黄铁矿特征及其含金性研究[J]. J4, 2010, 18(6): 8 -12 .
[4] 黄建军, 李天恩, 范红科. 大兴安岭地区金(银)多金属矿成矿地质背景及找矿潜力的探讨[J]. J4, 2010, 18(6): 13 -17 .
[5] 张涛, 肖小强. 北祁连宁缠河地区花岗岩地球化学特征[J]. 黄金科学技术, 2011, 19(1): 6 -10 .
[6] 胡琴霞, 陈凯, 陈超, 张圣潇. 广东那程银金矿床地质特征及成矿规律浅析[J]. J4, 2011, 19(1): 16 -20 .
[7] 梁超, 祝延修. 安徽省南部金、多金属成矿地质特征及找矿方向[J]. J4, 2011, 19(1): 21 -27 .
[8] 伊有昌, 马财, 李月隆, 潘彤, 罗才让, 王春英. 青海省板块构造环境与成矿作用[J]. J4, 2007, 15(1): 1 -9 .
[9] 李钢柱 ,贾元琴 ,张彪 ,陈克娜 ,胡沛青. 白音哈尔金矿床成矿作用[J]. J4, 2008, 16(3): 6 -12 .
[10] 路耀祖. 龙特锑金矿点地质特征及其找矿前景[J]. J4, 2008, 16(3): 13 -16 .