img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (1): 142-147.doi: 10.11872/j.issn.1005-2518.2020.01.080

• 采选技术与矿山管理 • 上一篇    下一篇

青海某金矿选冶中试厂工艺设计优化及应用

李飞1,2(),陈自强1,2   

  1. 1.青海省第六地质勘查院,青海 西宁 816000
    2.青海省金矿资源开发工程技术研究中心,青海 都兰 816100
  • 收稿日期:2019-06-20 修回日期:2019-09-29 出版日期:2020-02-29 发布日期:2020-02-26
  • 作者简介:李飞(1987-),男,湖北荆门人,工程师,从事金矿选矿技术工作。376169069@qq.com
  • 基金资助:
    青海省重点研发与转化计划项目“柴达木南缘难选铜金多金属矿高效利用技术研究与应用”(2019-SF-139)

Process Design Optimization and Application of a Dressing and Metallurgy Pilot Plant in Qinghai

Fei LI1,2(),Ziqiang CHEN1,2   

  1. 1.Qinghai 6th Institute of Geology Exploration,Xining 816000,Qinghai,China
    2.The Engineering and Technology Research Center for the Development of Gold Mining Resources in Qinghai Province,Dulan 816100,Qinghai,China
  • Received:2019-06-20 Revised:2019-09-29 Online:2020-02-29 Published:2020-02-26

摘要:

青海某金矿新建30 t/d选冶中试厂,选冶工艺以浮选和环保提金剂浸出工艺为主,主要针对金矿资源选冶新工艺、新技术、新药剂、新材料和自动化控制等在工业生产应用前的中试验证及优化试验进行系统研究。中试厂原设计流程单一,无法满足工艺流程优化试验研究的需求,通过对该中试厂工艺流程设计进行优化,实现了不同试验工艺流程的组合和调整,在小试研究结果基础上对该矿山2个矿区的矿石分别进行工艺优化中试研究,研究成果成功应用于选厂实际生产中,黄龙沟矿区矿石回收率由77.51%提高至82.48%,年新增产值883.45万元。

关键词: 选冶, 中试厂, 中试研究, 工艺优化, 回收率, 金矿, 青海省

Abstract:

A 30 t/d dressing and metallurgy pilot plant have been completed for a gold mine in Qinghai Province.The processing technologies of the pilot plant are flotation and gold leaching by environmental extraction agent.The pilot plant is mainly aimed at the pilot test study for gold ore dressing and metallurgy of new techniques,new materials and new technologies,new reagents and automatic control,etc. At the same time,it can carry out the flotation technology research for nonferrous metals.Mainly equipment in the pilot plant was monitored by frequency conversion,so that it can study the technical measures to improve equipment operation rate.The original design flow of the pilot plant is single,so it cannot carry out process optimization experiment research.Base on optimizing the process designs,different process test can be combination and adjustment.Through the open-circuit tests of laboratory for Huanglonggou gold ore and Shuizhadonggou gold ore in this mine,the recovery rate of the rougher flotation,the once scavenging,the second scavenging,the third scavenging for Shuizhadonggou gold ore is 80.41%,6.55%,1.47%,0.67%,and the grade of secondary cleaning concentrate is 30.40×10-6,so the suitable flotation process for Shuizhadonggou gold ore is single stage rough two stage cleaning three stage scavenging;the recovery rate of the rough flotation,the once scavenging,the second scavenging,the third scavenging for Huanglonggou gold ore is 75.95%,3.53%,2.32%,1.52%,and the grade of rough flotation concentrate is 29.51×10-6,so the suitable flotation process for Huanglonggou gold ore is single stage rough three stage scavenging.Based on the results of laboratory tests for these two minerals,the pilot tests were carried out in the pilot plant,which was aimed at demonstrating the results of the laboratory tests.Finally,this research result was successfully applied to the actual production of plants,the flotation process of the second plant was optimized to a single stage roughing three stage scavenging.As a result,the recovery rate of Huanglonggou gold ore is increased to 82.48% from 77.51%,more than 66.88 kg gold is additionally recovered per year,and the annual increase in production value reaches 8 834 500 yuan.

Key words: dressing-metallurgy, pilot plant, pilot test, process optimization, recovery, gold mine, Qinghai Province

中图分类号: 

  • TD953

表1

主要选矿工艺参数"

参数名称数值参数名称数值
处理能力/(t·d-130球磨磨矿浓度/%76~78
给矿粒度/mm-210粗选浓度/%28
碎矿产品粒度-11 mm占95%精矿含水率/%<15
球磨分级细度-0.074 mm占60%~85%

图1

原设计工艺流程"

图2

优化后的磨矿分级工艺流程示意图"

图3

优化后的浮选工艺流程示意图"

表2

小试工艺参数及药剂制度"

参数名称黄龙沟水闸东沟
药剂质量分数/%28.3628.36
细度(-0.074 mm含量占比)/%71.5473.83
粗选药剂用量/(g·t-1Na2CO31 5002 000
CuSO4150150
丁铵黑药6080
异戊基黄药80100
11#油3030
扫一药剂用量/(g·t-1丁铵黑药3040
异戊基黄药4050
11#油1515
扫二药剂用量/(g·t-1丁铵黑药1520
异戊基黄药2025
11#油88
扫三药剂用量/(g·t-1丁铵黑药810
异戊基黄药1013
11#油44

表3

开路试验结果"

作业水闸东沟黄龙沟
品位/(×10-6产率/%回收率/%品位/(×10-6产率/%回收率/%
原矿2.29100.00100.002.51100.00100.00
精一尾3.443.375.074.981.042.06
精二尾7.271.093.466.950.942.60
精三尾10.580.743.428.870.853.01
扫一精3.444.366.554.212.113.53
扫二精2.051.641.473.781.542.32
扫三精1.560.980.673.021.261.52
精矿33.544.6768.4647.263.6268.28
尾矿0.3083.1510.900.4789.0216.68

表4

选厂生产指标"

矿样来源品位/(×10-6产率/%回收率/%
原矿精矿尾矿
一选厂(水闸东沟)2.3127.840.456.7981.84
二选厂(黄龙沟)2.4745.390.584.2277.51

表5

中试结果"

矿样来源流程品位/(×10-6产率/%回收率/%
原矿精矿尾矿
黄龙沟一粗三扫2.4228.550.457.0182.71
一粗三扫一精2.4833.680.515.9480.66
一粗三扫二精2.4538.720.554.9878.67
一粗三扫三精2.5045.280.594.2777.41
水闸东沟一粗二扫二精2.2526.840.436.8982.21
一粗三扫三精2.2227.550.426.6382.34

表6

优化后生产指标"

流程品位/(×10-6产率/%回收率/%
原矿精矿尾矿
一粗三扫2.4530.200.466.6982.48

表7

优化前后指标对比"

阶段原矿量/t原矿品位/(×10-6回收率/%精矿品位/(×10-6回收金属量/kg销售单价/(元·g-1销售系数/%产值/万元
优化前500 0002.4577.5145.39949 497.50310.008023 547.54
优化后500 0002.4582.4830.201 010 380.00310.007824 430.99
1 王晓芒,朱龙根,王卫荣.加速中试基地建设促进科技成果转化[J].研究与发展管理,1995(5):21-24.
Wang Xiaomang,Zhu Longgen,Wang Weirong.Speed up the construction of experimental base to promote transformation of scientific and technological achievements[J].Journal of Research and Development Management,1995(5):21-24.
2 奚正平.破解中试难题[J].中国人才,2013(3):39.
Xi Zhengping.Crack pilot problem[J].Chinese Talents,2013(3):39.
3 邵丽莉,徐晓波.中试基地的建设[J].浙江化工,2001,32(3):10-12.
Shao Lili,Xu Xiaobo.Construction in pilot test base[J].Zhejiang Chemical Industry,2001,32(3):10-12.
4 鲍林,黄朗喜.科技成果转化的中试环节建设[J].研究与发展管理,2002,14(4):30-34.
Bao Lin,Huang Langxi.The construction for the middle-phase links of S&T achievements’ transformation[J].Research and Development Management,2002,14(4):30-34.
5 陈建中,胡家乐.科技成果转化难问题探析[J].安徽科技,2005(4):38-39.
Chen Jianzhong,Hu Jiale.Analysis of difficulties in transforming scientific and technological achievements[J].Anhui Science and Technology,2005(4):38-39.
6 张晋虎,王成一,赵景荣.关于中试基地建设中的几个问题[J].研究与发展管理,1993(3):58-59.
Zhang Jinhu,Wang Chengyi,Zhao Jingrong.On several issues in the construction of the pilot base[J].Research and Development Management,1993(3):58-59.
7 符建峰.产业化论证:科技成果转化的必要环节[J].中国高校科技,2014(11):90-91.
Fu Jianfeng.Industrialization demonstration:The necessary link for the transformation of scientific and technological achievements[J].Chinese University Science and Technology,2014(11):90-91.
8 高玉祥,葛藟.试论科研单位中试基地的建设[J].农机化研究,1993(1):54-56.
Gao Yuxiang,Ge Lei.On the construction of a trial base in a scientific research unit[J].Agricultural Mechanization Study,1993(1):54-56.
9 杨世中,宋春雷,胡江南.选矿自动化在高原矿山的应用[J].有色金属(选矿部分),2013(2):59-63.
Yang Shizhong,Song Chunlei,Hu Jiangnan.The application of benefication automation at the plateau mine[J].Nonferrous Metals(Mineral Processing Section),2013(2):59-63.
10 明平田,毕文.选矿自动化在金辉矿业的应用[J].武汉工程大学学报,2011,33(2):92-95.
Ming Pingtian,Bi Wen.Processing automation application in Jinhui mining plant[J].Journal of Wuhan Institute of Technology,2011,33(2):92-95.
11 明平田,夏明强,王万芳.提高青海某金矿浮选回收率试验[J].现代矿业,2012(4):62-64.
Ming Pingtian,Xia Mingqiang,Wang Wanfang.Improving the flotation recovery rate of a gold mine in Qinghai[J].Modern Mining,2012(4):62-64.
12 许庆砚,李程伟,苏惠民.印尼某难选冶金矿石选矿试验研究[J].黄金,2015,36(4):59-62.
Xu Qingyan,Li Chengwei,Su Huimin.Experimental research on the processing of one refractory gold ore from Indonesia[J].Gold,2015,36(4):59-62.
13 姚鲁之.论“多碎少磨”的工艺与装备[J].新世纪水泥导报,2001(6):29-30.
Yao Luzhi.On the process and installations for “more crushing,less grinding” [J]. Cement Guide for New Epoch,2001(6):29-30.
14 冯国俊.多碎少磨 增产降耗[J].有色金属(选矿部分),1996(4):22-26.
Feng Guojun.More crushing and less grinding to increase production and reduce consumption[J].Non-ferrous Metals(Mineral Processing Section),1996(4):22-26.
15 方文,尚海洋,站立岗,等.破碎控制系统在选矿生产过程的应用[J].中国科技纵横,2014(19):55-56.
Fang Wen,Shang Haiyang,Zhan Ligang,et al.Application of crushing control system in mineral processing[J].China Science and Technology Panorama Magazine,2014(19):55-56.
16 冯立琴,徐应军.磨矿分级过程的自动控制[J].甘肃冶金,2012(6):123-126.
Feng Liqin,Xu Yingjun.Auto-control of grinding classifying process[J].Gansu Metallurgy,2012(6):123-126.
17 陶建利,周清波.贵州某金矿选矿试验研究[J].矿冶工程,2013,33(1):52-55.
Tao Jianli,Zhou Qingbo.Experimental study on gold ore from Guizhou[J].Mining and Metallurgical Engineering,2013,33(1):52-55.
18 陈贵烽,李文郁,王昱.浮选过程工艺参数的自动化控制[J].选煤技术,1993(6):23-26.
Chen Guifeng,Li Wenyu,Wang Yu.Flotation process parameter of automatic control[J].Coal Preparation Technology,1993(6):23-26.
19 刘世理,訾涛,朱再胜,等.选煤厂浮选工艺实现自动化控制的探讨[J].山西焦煤科技,2011,35(1):50-52.
Liu Shili,Zi Tao,Zhu Zaisheng,et al.Discussion on automatic control of the flotation process in coal preparation plant[J].Shanxi Coking Coal Science and Technology,2011,35(1):50-52.
20 李剑铭,刘万峰,马子龙,等.某金矿矿石浮选优化试验研究[J].有色金属(选矿部分),2004(3):16-18.
Li Jianming,Liu Wanfeng,Ma Zilong,et al.The research on optimizing processing parameter of flotation of certain gold ore[J].Nonferrous Metals(Mineral Processing Section),2004(3):16-18.
21 王楠,杨守斌,蔡有国,等.某金矿浮选流程优化试验研究[J].黄金,2015,36(8):44-48.
Wang Nan,Yang Shoubin,Cai Youguo,et al.Experimental study on the optimization of flotation process in a gold mine[J].Gold,2015,36(8):44-48.
[1] 郭辉,刘春明,黄德志,邹海洋,陈磊. 广西大瑶山大裕金矿地质特征及找矿预测[J]. 黄金科学技术, 2020, 28(1): 12-20.
[2] 黄鑫, 宋倩, 王勇军, 沈立军, 朱裕振, 孙超. 山东栖霞—大柳行地区金矿资源潜力评价[J]. 黄金科学技术, 2020, 28(1): 21-31.
[3] 陈玉民,曾庆栋,孙之夫,王昭坤,范宏瑞,肖风利,褚少雄. 胶东金地球化学背景研究[J]. 黄金科学技术, 2019, 27(6): 791-801.
[4] 杨宝凯,徐美君,曹瑞,于洋,解永健,何安全. 青海滩北雪峰地区土壤地球化学异常特征及找矿前景[J]. 黄金科学技术, 2019, 27(6): 816-825.
[5] 谢雄辉. 陇南紫金难处理金精矿工艺矿物学研究[J]. 黄金科学技术, 2019, 27(6): 950-956.
[6] 张克川,罗清威,义爱文,秦德雨,权成,杨继兵. 坦桑尼亚PL7184金矿床矿石特征与金的赋存状态[J]. 黄金科学技术, 2019, 27(6): 826-834.
[7] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[8] 郭剑衡, 冷成彪, 张兴春, 张伟, 尹崇军, 张陆佳, 田振东. 滇西北烂泥塘斑岩铜金矿床铁氧化物LA-ICP-MS微量元素特征及其地质意义[J]. 黄金科学技术, 2019, 27(5): 659-677.
[9] 张天航, 赵兴东, 李怀宾, 赵一凡, 张姝婧. 急倾斜中厚矿体长矿房连续开采干式充填采矿法[J]. 黄金科学技术, 2019, 27(5): 704-711.
[10] 周贺鹏, 胡洁, 段朝阳, 邓攀, 钟志刚, 张永兵. 甘肃洛坝铅锌矿选矿流程考察与优化[J]. 黄金科学技术, 2019, 27(5): 696-703.
[11] 张文平, 蔡明明, 徐超. 某含金原生矿石的工艺矿物学研究[J]. 黄金科学技术, 2019, 27(5): 770-776.
[12] 傅开彬, 钟秋红, 毛羽, 王磊, 滕德亮, 赵涛涛. 四川某高碱性含铜金矿综合回收钙镁铜金试验研究[J]. 黄金科学技术, 2019, 27(5): 777-783.
[13] 王杰亭,孙双海,卢俊华,王自力,盖晓谦,刘争. 老挝爬奔金矿床金矿(脉)体侧伏规律及深部找矿前景分析[J]. 黄金科学技术, 2019, 27(4): 480-488.
[14] 曹家源,马凤山,郭捷,张国栋,李兆平. 海底倾斜矿体开采沉陷预测研究[J]. 黄金科学技术, 2019, 27(4): 522-529.
[15] 李威,马凤山,卢湘鹏,曹家源,郭捷. 基于三维地震探测的海底矿区地质结构分析[J]. 黄金科学技术, 2019, 27(4): 530-538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[2] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .
[3] 刘东海, 刘新会. 西秦岭寨上特大型金矿床黄铁矿特征及其含金性研究[J]. J4, 2010, 18(6): 8 -12 .
[4] 黄建军, 李天恩, 范红科. 大兴安岭地区金(银)多金属矿成矿地质背景及找矿潜力的探讨[J]. J4, 2010, 18(6): 13 -17 .
[5] 张涛, 肖小强. 北祁连宁缠河地区花岗岩地球化学特征[J]. 黄金科学技术, 2011, 19(1): 6 -10 .
[6] 胡琴霞, 陈凯, 陈超, 张圣潇. 广东那程银金矿床地质特征及成矿规律浅析[J]. J4, 2011, 19(1): 16 -20 .
[7] 梁超, 祝延修. 安徽省南部金、多金属成矿地质特征及找矿方向[J]. J4, 2011, 19(1): 21 -27 .
[8] 伊有昌, 马财, 李月隆, 潘彤, 罗才让, 王春英. 青海省板块构造环境与成矿作用[J]. J4, 2007, 15(1): 1 -9 .
[9] 李钢柱 ,贾元琴 ,张彪 ,陈克娜 ,胡沛青. 白音哈尔金矿床成矿作用[J]. J4, 2008, 16(3): 6 -12 .
[10] 路耀祖. 龙特锑金矿点地质特征及其找矿前景[J]. J4, 2008, 16(3): 13 -16 .