img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (6): 896-902.doi: 10.11872/j.issn.1005-2518.2019.06.896

• 采选技术与矿山管理 • 上一篇    下一篇

固液两相耦合条件下全尾砂连续沉降规律研究

康虔1,2(),王运敏1,贺严3,薛希龙2,张楚旋2()   

  1. 1. 中钢集团马鞍山矿山研究院有限公司,安徽 马鞍山 243000
    2. 南华大学资源环境与安全工程学院,湖南 衡阳 421001
    3. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2018-12-05 修回日期:2019-07-02 出版日期:2019-12-31 发布日期:2019-12-24
  • 通讯作者: 张楚旋 E-mail:35763205@qq.com;zhangchuxuan24@csu.edu.cn
  • 作者简介:康虔(1986-),男,江西泰和人,讲师,从事尾矿处理研究工作。35763205@qq.com
  • 基金资助:
    金属矿山安全与健康国家重点实验室开放课题“海泡石辅助水泥固化尾砂效能与机理研究”(2017-JSKSSYS-03);湖南省教育厅科研基金项目“大水矿山地下开采岩体稳定性分级”(17C1375)

Experimental Study on Continuous Settlement Law Under Solid-Liquid Two Phase Coupling Conditions of Unclassified Tailings

Qian KANG1,2(),Yunmin WANG1,Yan HE3,Xilong XUE2,Chuxuan ZHANG2()   

  1. 1. Sinosteel Maanshan Institute of Mining Research Co. , Ltd. ,Maanshan 243000,Anhui,China
    2. School of Resources & Environment and Safety Engineering,University of South China,Hengyang 421001,Hunan,China
    3. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2018-12-05 Revised:2019-07-02 Online:2019-12-31 Published:2019-12-24
  • Contact: Chuxuan ZHANG E-mail:35763205@qq.com;zhangchuxuan24@csu.edu.cn

摘要:

针对江西某铅锌矿全尾砂难以浓缩的问题,研究探索添加絮凝剂提高其浓缩效果的可行性。对该全尾砂浆体分别进行固液两相耦合条件下静态和动态絮凝沉降正交试验,确定尾砂浆絮凝沉降规律,对絮凝剂选型、用量和给料速度等关键参数进行优化。结果表明:当给料速度由0.89 t/(m2·h)减少至0.60 t/(m2·h)时,溢流水固含量逐渐降低;当给料浓度为13.59%,AH-910-SH型絮凝剂浓度为20 g/t,给料速度为0.60 t/(m2·h)时,底流浓度达到最大值72.82%,溢流水固含量为162.68×10-6(<300×10-6),絮凝沉降效果最佳。该试验为全尾砂快速沉降技术奠定了理论基础,同时为全尾砂高浓度充填方案选择提供了技术参考。

关键词: 全尾砂浆, 沉降规律, 固液耦合, 絮凝剂, 给料速度, 充填采矿

Abstract:

The technology of unclassified tailings high concentration backfilling has been applied to underground mining gradually.Because it has many advantages such as environmental protection,less dehydration,dispose more tailings.The grain size of tailings are getting smaller and smaller with the progress of beneficiation technology. This situation leads to the result of tailings concentration is unsatisfactory. Aiming at the difficulty of concentrating the super fine tailings of a lead-zinc mine in Jiangxi,this study explored the feasibility of adding flocculant to improve its concentration effect.On the basis of physical and chemical properties analysis for solid-liquid two phase coupling respectively under the condition of static and dynamic flocculation settlement of orthogonal test,we determine the tail slurry flocculating settling velocity in the enrichment,and by using the MATLAB software carry on the regression analysis of experimental data for the selection and dosage of flocculant,which provides the basis for the determination of optimal concentration of diluted slurry.Firstly,varieties and dosage of flocculants were determined through static natural settlement tests.Secondly,dynamic flocculation settling tests were conducted according to the varieties and dosage of flocculants that determined before.The influence of feeding speed to the clarity degree of overflow water and the underflow concentration were tested.The experimental results show that the feeding speed by 0.89 t/(m2·h) reduced to 0.60 t/(m2·h),overflow water solid content gradually decreased,when the feed concentration 13.59%,the concentration of the AH-910-SH type flocculant is 20 g/t,the feeding speed is 0.60 t/(m2·h),the underflow concentration reached a maximum of 72.82%,the overflow water solid content is 162.68×10-6 (<300×10-6),the superfine all backfilling flocculation sedimentation effect is best.This test provided theoretical basis to the rapid settlement technology of ultra-fine unclassified tailings.Thus,the test established the technical foundation of high concentration backfilling of ultra-fine unclassified tailings.The results of the study have certain significance for the application of continuous settlement technology of unclassified tailings.

Key words: unclassified tailings slurry, settlement law, solid-liquid coupling, flocculant, feeding speed, mining with backfill

中图分类号: 

  • TD853.34

表1

全尾砂样品粒径分布"

粒径/μm占比/%粒径/μm占比/%
2501.11-75~+4512.73
-250~+15014.76-45~+374.31
-150~+7515.29-3751.80

表2

全尾砂物理力学性质"

参数数值参数数值
比重2.85水上休止角/(°)38.5
密度/(t·m-3)2.71水下休止角/(°)28.0
渗透系数/(cm·s-1)3.86×10-6

表3

全尾砂压缩参数测定结果"

指标名称不同压力(kPa)范围下的指标取值
0~5050~100100~200200~400
压缩系数2.750.690.580.22
压缩模量/MPa0.261.121.433.48

图1

全尾砂粒级分布曲线"

表4

全尾砂化学成分测定结果"

元素质量分数/%元素质量分数/%
O48.400S2.987
Mg0.294K3.316
Al10.830Fe3.457
Si27.580Pb0.017

图2

全尾砂自然沉降过程示意图A-清液区;B-等浓度区;C-变浓度区;D-沉聚区"

图3

某铁矿全尾砂自然沉降高度曲线"

图4

不同絮凝剂类型和用量条件下全尾砂自然沉降速度曲线(a)絮凝剂添加量为20 g/t;(b)絮凝剂添加量为40 g/t"

图5

絮凝剂添加量对沉降速度的影响试验"

图6

AN-910-SH絮凝剂不同添加量下的全尾砂沉降高度及速度曲线"

图7

动态絮凝沉降试验装置"

图8

动态絮凝沉降试验过程"

表5

全尾砂动态絮凝沉降试验结果"

给料速度/(t·m-2·h-1底流浓度/%泥层上升速度/(m·h-1溢流水上升速度/(m·h-1溢流水固含量/(mg·L-1
0.361.430.383.1998
0.459.380.664.19136
0.557.790.715.22184
0.655.460.976.00223
0.754.101.757.20281
0.851.371.958.18364
0.948.722.019.73475
1 Wang X M,Zhao B,Zhang C S,et al. Paste-like self-flowing transportation backfill technology based on coal gangue[J].Mining Science and Technology,2009,19(2):137-143.
2 Zhang J,Qiang S,Fourie A,et al. Risk assessment and prevention of surface subsidence in deep multiple coal seam mining under dense above-ground buildings: Case study[J].Human and Ecological Risk Assessment,2018(4):1-15.
3 Wang A,Ma L,Wang Z,et al. Soil and water conservation in mining area based on ground surface subsidence control: Development of a high-water swelling material and its application in backfilling mining[J].Environmental Earth Sciences,2016,75(9):779-788.
4 史秀志,胡海燕,杜向红,等. 立式砂仓尾砂浆液絮凝沉降试验研究[J]. 矿冶工程,2010,30(3):1-3.
Shi Xiuzhi,Hu Haiyan,Du Xianghong,et al. Experimental study on flocculating sedimentation of tailings slurry in a vertical sand tank[J].Mining and Metallurgical Engineering,2010,30(3):1-3.
5 费祥俊.浆体与粒状物料输送水力学[M].北京:清华大学出版社,1994:117-130.
Fei Xiangjun.Hydraulics of Transporting Slurry and Granular Material[M].Beijing:Tsinghua University Press,1994: 117-130.
6 吕宪俊,金子桥,胡术刚,等.细粒尾矿充填料浆的流变性及充填能力研究[J].金属矿山,2011,41(5): 32-35.
Xianjun Lü,Jin Ziqiao,Hu Shugang,et al. Study on the rheological property and filling capacity of the filling slurry with fine tailing[J]. Metal Mine,2011,41(5): 32-35.
7 王星,瞿圆媛,胡伟伟,等.尾矿浆絮凝沉降影响因素的试验研究[J],金属矿山,2008,38(5): 149-153.
Wang Xing,Qu Yuanyuan,Hu Weiwei,et al. Experiment research on factors influencing tailing pulp flocculation settling[J]. Metal Mine,2008,38(5): 149-153.
8 Meunier L,Koch I,Reimer K J. Effect of particle size on arsenic bioaccessibility in gold mine tailings of Nova Scotia[J].Science of the Unclassified Environment,2011,409(11):2233-2243.
9 De Kretser R G,Scales P J. The effect of temperature on the yield stress of mineral suspensions[J]. Journal of Colloid and Interface Science,2008,328(1): 187-193.
10 Schowalter W R,Christensen G.Toward a rationalization of the slump test for fresh concrete:Comparisons of calculations and experiments[J]. Journal of Rheology,1998,42(4): 865-870.
11 Bauer E,de Sousa J G G,GuimarSes E A,et al. Study of the laboratory Vane test on mortars[J].Building and Environment,2007,42(1): 86-92.
12 Ferraris C F,Gaidis J M. Connection between the rheology of concrete and rheology of cement paste [J]. ACI Materials Journal,1992,89(4): 383-393.
13 王新民,肖卫国,王小卫,等.金川全尾砂膏体充填料浆流变特性研究[J].矿冶工程,2002,22(3): 13-16.
Wang Xinmin,Xiao Weiguo,Wang Xiaowei,et al. Study on rheological properies of full tailing paste filling slurry of Jinchuan mine[J]. Mining and Metallurgical Engineering,2002,22(3): 13-16.
14 王洪武,吴爱祥,刘超,等.五道岭钼矿全尾砂絮凝沉降试验研究[J].昆明理工大学学报,2010,35(2): 1-4.
Wang Hongwu,Wu Aixiang,Liu Chao,et al. Experimental study on unclassified tailings flocculation and settlement in Wudaoling molybdenum mine[J].Journal of Kunming University of Science and Technology,2010,35(2): 1-4.
15 湛含辉,罗彦伟.高浓度细粒煤泥水的絮凝沉降研究[J].煤炭科学技术,2007,35(2):77-79.
Zhan Hanhui,Luo Yanwei. Research on flocculation setting of high density fine particle coal slurry[J]. Coal Science and Technology,2007,35(2):77-79.
16 焦华喆,王洪江,吴爱祥,等.全尾砂絮凝沉降规律及其机理[J].北京科技大学学报,2010,32(6):702-707.
Jiao Huazhe,Wang Hongjiang,Wu Aixiang,et al. Rule and mechanism of flocculation sedimentation of unclassified tailings[J]. Journal of University of Science and Technology Beijing,2010,32(6):702-707.
17 刘晓辉,吴爱祥,王洪江,等.膏体充填尾矿浓密规律初探[J].金属矿山,2009,39(9):38-44.
Liu Xiaohui,Wu Aixiang,Wang Hongjiang,et al. A primary discussion on the thickening law of paste-filling[J]. Metal Mine,2009,39(9):38-44.
18 He M,Wang Y,Forssberg E. Slurry rheology in wet ultrafine grinding of industrial minerals: A review[J]. Powder Technology,2004,147(1): 94-112.
19 Wong H H C,Kwan A K H. Rheology of cement paste: Role of excess water to solid surface area ratio [J]. Journal of Materials in Civil Engineering,2008,20(2): 189-197.
20 Saak A W,Jennings H M,Shah S P. The influence of wall slip on yield stress and viscoelastic measurements of cement paste [J]. Cement and Concrete Research,2001,31(2): 205-212.
[1] 宋恩祥, 李强, 张静, 彭康. 蚀变带内矿体开采中人工假底的应用研究[J]. 黄金科学技术, 2019, 27(5): 722-730.
[2] 陈鑫政,郭利杰,李文臣,李宗楠. 全尾砂沉降浓缩试验研究[J]. 黄金科学技术, 2019, 27(1): 105-111.
[3] 刘娅,丁剑,付国燕,钱鹏,叶树峰. 微细氰化尾矿颗粒絮凝沉降实验研究[J]. 黄金科学技术, 2015, 23(4): 91-96.
[4] 王新民,胡一波,王石,刘吉祥,陈宇,卞继伟. 超细全尾砂充填配比优化正交试验研究[J]. 黄金科学技术, 2015, 23(3): 45-49.
[5] 赵龙,王楠,孙铭骏. 盘区充填采矿法二步采转层优化在三山岛金矿的应用[J]. 黄金科学技术, 2013, 21(6): 73-77.
[6] 白复锌,王善功,张永林,安智海. 山东鑫汇金矿厚度突变矿体采矿方法的选择与应用[J]. J4, 2011, 19(3): 68-69.
[7] 路仁江, 刘鹏金, 娄伟华. 高水固结充填采矿法工艺创新与应用[J]. J4, 2011, 19(1): 51-54.
[8] 徐东,胡忠强. 中深孔采矿法在新城金矿的研究与应用[J]. J4, 2010, 18(5): 72-75.
[9] 路明福, 扈守全. 厚大破碎矿体回采技术的对比研究[J]. J4, 2010, 18(4): 62-64.
[10] 修国林, 何顺斌, 于常先. 三山岛海底采矿关键技术及最优开采方案研究[J]. J4, 2010, 18(3): 9-13.
[11] 尹传红. 电动铲运机的使用和修理经验[J]. J4, 2006, 14(5): 41-43.
[12] 曹国荣. 合理利用矿山井下充填加强地表开采保护[J]. J4, 2005, 13(6): 27-29.
[13] 田波, 李殿辉. 提高充填体强度的技术措施[J]. J4, 2005, 13(1-2): 51-54.
[14] 陈胜权, 刘党权. 鸡冠嘴矿区Ⅰ号矿体充填采矿法的经验与教训[J]. J4, 2005, 13(1-2): 40-43.
[15] 贺志宏. 高村矿区建立干式充填储料系统方案初探[J]. J4, 2004, 12(3): 18-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!