img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (5): 777-783.doi: 10.11872/j.issn.1005-2518.2019.05.777

• 采选技术与矿山管理 • 上一篇    下一篇

四川某高碱性含铜金矿综合回收钙镁铜金试验研究

傅开彬1,2(),钟秋红1,2,毛羽1,2,王磊1,2,滕德亮1,2,赵涛涛3   

  1. 1. 固体废物处理与资源化教育部重点实验室,四川 绵阳 621010
    2. 西南科技大学环境与资源工程学院,四川 绵阳 621010
    3. 四川省海蓝晴天环保科技有限公司,四川 成都 610045
  • 收稿日期:2019-04-07 修回日期:2019-05-27 出版日期:2019-10-31 发布日期:2019-11-07
  • 作者简介:傅开彬(1975-),男,四川威远人,副教授,从事难处理矿石选矿方面的研究工作。fukaibin@126.com
  • 基金资助:
    四川省科技计划资助项目“纳米气泡气浮修复重金属污染土壤应急关键技术;装备研发”(2018GZ0403或18zs2114);北京市工业典型污染物资源化处理重点实验室基金项目“基于电化学的铜锌多金属尾矿‘两段’细菌浸出工艺研究”(ROT-2019-YB5)

Study on Comprehensive Recovery of Calcium,Magnesium,Copper and Gold from High-alkaline Copper-bearing Gold Ore in Sichuan Province

Kaibin FU1,2(),Qiuhong ZHONG1,2,Yu MAO1,2,Lei WANG1,2,Deliang TENG1,2,Taotao ZHAO3   

  1. 1. Key Laboratory of Solid Waste Treatment and Resource Recycle,Ministry of Education,Mianyang 621010,Sichuan, China
    2. School of Environment and Resource,Southwest University of Science and Technology,Mianyang 621010,Sichuan,China
    3. Sichuan Hailan Qingtian Environmental Protection Technology Co. , Ltd. ,Chengdu 610045,Sichuan,China
  • Received:2019-04-07 Revised:2019-05-27 Online:2019-10-31 Published:2019-11-07

摘要:

针对碳酸盐、砷和铜含量高的“三高”金矿选矿回收难度较大的问题,采用原矿焙烧脱碳除砷—NH4Cl“闪速”浸钙—(NH42SO4浸镁铜—非氰浸剂药剂(swust-1)浸金工艺流程综合回收矿石中有价元素。研究结果表明:当焙烧温度为950 ℃、焙烧时间为2 h、矿浆浓度为30%、-0.074 mm粒级含量为70%、NH4Cl浓度为3.0 mol/L和浸出时间为10 min时,矿石中Ca2+、Mg2+和Cu2+浸出率分别为82.88%、20.12%和16.75%;在(NH42SO4浓度为2.5 mol/L、矿浆浓度为30%和浸出温度为50 ℃的条件下,经过“两段”浸出,Mg2+和Cu2+浸出效果较好。经过“焙烧—浸钙镁铜”后,金的浸出率也大大提高。通过上述工艺流程处理后,钙、镁、铜和金的总浸出率分别可达96.18%、95.16%、80.51%和78.86%,提高了高碱性含铜金矿中有价元素浸出率和综合经济价值。

关键词: 碳酸盐, 高碱性, 含铜金矿, 焙烧, 浸出, 综合回收

Abstract:

The high alkaline copper-bearing gold ore usually have the following three characteristics:(1) The alkaline gangue has a high content,and often contains a large amount of carbonate minerals,such as calcite and dolomite.(2) The copper content is relatively high,and the copper content in the ore is usually above 1.0%.(3) The high alkaline copper-bearing gold ore is often mixed with both sulfide and oxidized minerals,as well as arsenic and other toxic and harmful elements.It is difficult to obtain the ideal separation index by conventional mineral processing methods. However,with the gradual decreasement of easily-recover gold ores,more and more attention has been paid to the study on the metallurgical technology of refractory gold ores.The technological process,Roasting of raw ore to remove carbon and arsenic-Rapid leached by ammonium chloride of calcium-Ammonium sulfate leaching of magnesium and copper-Non-cyanide leaching (swust-1) of gold,was used to recover valuable elements from ore,and to increase recovery rate of “three high” gold mine,the gold ores characterize high-carbonate,high-arsenic and high-copper.The result shows that leaching rate of calcium,magnesium and copper reached 82.88%,20.12% and 16.75%,recpectively,when calcination temperature is 950 ℃,calcination time is 2 h,pulp density is 30%,-0.074 mm grain size content is 70%,ammonium chloride concentration is 3.0 mol/L,and leaching time is 10 min. After “two-stage” leaching,the leaching rate of magnesium and copper ion is more higher than unroasted ore,under the condition of ammonium sulfate concentration of 2.5 mol/L,pulp concentration of 30%,and leaching temperature of 50 ℃. After “roasting-leaching of calcium,magnesium and copper”,the leaching rate of gold was also greatly improved.Through the above process,the total leaching rates of calcium,magnesium,copper and gold can reach 96.18%,95.16%,80.51% and 78.86%,respectively,which improve the leaching rate and comprehensive economic value of valuable elements in high-alkaline copper-bearing gold deposits,and has the potential of popularization and application.

Key words: carbonate, high-alkaline, copper-bearing gold ore, roasting, leaching, comprehensive recovery

中图分类号: 

  • TF11

表1

原矿XRF分析结果"

化学成分 w(B) 化学成分 w(B) 化学成分 w(B)
SiO2 8.92 MgO 19.17 CuO 1.61
Fe2O3 26.06 CaO 40.10 Na2O 0.03
SrO 0.02 BaO 0.08 PbO 0.02
Al2O3 0.83 K2O 0.19 Sb2O3 0.45
SO3 1.02 MnO 0.19 ZnO 0.10
P2O5 0.51 As2O3 0.67 Cl 0.03

图1

矿物嵌布特征 Mal-孔雀石;Dol-白云石;Az-蓝铜矿"

图2

试验流程"

图3

粒度对Ca2+、Mg2+和Cu2+浸出效果的影响"

图4

焙烧时间对Ca2+、Mg2+和Cu2+浸出效果的影响"

图5

浸出时间对Ca2+、Mg2+和Cu2+浸出效果的影响"

图6

Ca2+浸出动力学拟合曲线"

图7

Mg2+和Cu2+浸出试验结果"

图8

金浸出试验结果"

图9

浸渣XRD分析"

1 殷书岩,赵鹏飞,李少龙,等 .难处理金矿预处理技术的选择[J].中国有色冶金,2018,47(2):30-34.
Yin Shuyan , Zhao Pengfei , Li Shaolong ,et al .Selection of pretreatment technology of refractory gold ore[J].China Nonferrous Metallurgy,2018,47 (2):30-34.
2 Shin D , Ahn J , Lee J .Kinetic study of copper leaching from chalcopyrite concentrate in alkaline glycine solution [J].Hydrometallurgy,2019,183:71-78.
3 Fu X J , Chu M S , Gao L H ,et al .Stepwise recovery of magnesium from low-grade ludwigite ore based on innovative and clean technological route[J].Transactions of Nonferrous Metals Society of China,2018,28(11):2383-2394.
4 龚明辉,高起方,尹福兴,等 .云南某金矿选矿工艺试验研究[J].黄金,2019,40(1):54-58.
Gong Minghui , Gao Qifang , Yin Fuxing ,et al .Experimental research on the mineral processing process in a gold mine of Yunnan[J].Gold,2019,40(1):54-58.
5 任瑞晨,赵靖雨,陈康,等 .铵盐浸出碳酸钙试验研究[J].非金属矿,2017,40(6):42 - 44.
Ren Ruichen , Zhao Jingyu , Chen Kang ,et al .Study of ammonium salt leaching calcium carbonate test[J].Non-Metallic Mines,2017,40(6):42-44.
6 黄春晖,徐嘉欣,颜粉鸽 .(NH4)2SO4浸出法由白云石制备纳米氧化镁[J].盐科学与化工,2017,46(4):6-10.
Huang Chunhui , Xu Jiaxin , Yan Fenge .Synthesis of nano magnesium oxide from dolomite via ammonium sulfate leaching[J].Journal of Salt Science and Chemical Industry,2017,46(4):6-10.
7 毛莹博,方建军,文娅,等 .不同氨—铵浸出体系对氧化铜矿铜浸出率影响规律的研究[J].矿冶,2012,21(1):42-45.
Mao Yingbo , Fang Jianjun , Wen Ya ,et al .Analysis on influence regularity of the ammonia-ammonium leaching system on leaching rate of copper[J].Mining and Metallurgy,2012,21(1):42-45.
8 纪翠翠 .高碱性氧化铜矿石的氨浸—萃取试验研究[D].昆明:昆明理工大学,2009.
Ji Cuicui .Study on “Ammonia Leaching—Solvent Extraction” of High-alkaline Copper Oxide Ore[D].Kunming:Kunming University of Science and Technology,2009.
9 Yin W Z , Sun Q Y , Li D ,et al .Mechanism and application on sulphidizing flotation of copper oxide with combined collectors[J].Transactions of Nonferrous Metals Society of China,2019,29(1):178-185.
10 Jeldres R I , Uribe L , Cisternas L A ,et al .The effect of clay minerals on the process of flotation of copper ores ——A critical review[J].Applied Clay Science,2019,170:57-69.
11 Yin S H , Wang L M , Wu A X ,et al .Enhancement of copper recovery by acid leaching of high-mud copper oxides:A case study at Yangla copper mine,China[J].Journal of Cleaner Production,2018,202:321-331.
12 Liu W F , Fu X X , Yang T Z ,et al .Oxidation leaching of copper smelting dust by controlling potential[J].Transactions of Nonferrous Metals Society of China,2018,28(9):1854-1861.
13 刘金枝,缪秀秀,杨保华,等 .铜矿浸出试验研究及影响因素分析[J].矿冶工程,2013,33(5):95-97.
Liu Jinzhi , Miao Xiuxiu , Yang Baohua ,et al .Copper leaching test and its influencing factors analysis[J].Mining and Metallurgical Engineering,2013,33(5):95-97.
14 冯亚平,王洪刚,刘三平 .矿石粒度对镍钴浸出率的影响研究[J].中国资源综合利用,2015,33(9):20-22.
Feng Yaping , Wang Honggang , Liu Sanping .Investigation on the effect of particle size of ore on the leaching rate[J].China Resources Comprehensive Utilization,2015,33(9):20-22.
15 王琛,刘润清,孙伟,等 .高泥氧化锌矿脱泥/不脱泥浮选对矿浆流变性能的影响[J].矿冶工程,2018,38(5):44-50.
Wang Chen , Liu Runqing , Sun Wei ,et al .Effect of desliming/non-desliming flotation on pulp rheological properties of highly-mudded zinc oxide ore[J].Mining and Metallurgical Engineering,2018,38(5):44-50.
16 Chen S , Yang Y K , Liu C Q ,et al .Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans[J].Chemosphere,2015,141:162-168
17 Yang Y K , Chen S , Li S C ,et al .Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect[J].Journal of Biotechnology,2014,173:24-30.
18 Fu K B , Ning Y , Chen S ,et al .Bioleaching of different copper sulphide minerals and their physicochemical properties dependence[J].Mineral Processing and Extractive Metallurgy Imm Transactions,2016,125(1):1-4.
19 傅开彬,董发勤,谌书,等 .四川某含砷难处理金精矿细菌氧化—无氰提金试验[J].金属矿山,2015,44(1):67-71.
Fu Kaibin , Dong Faqing , Chen Shu ,et al .Biooxidation-Cyanide-free gold leaching of a refractory gold ore containing arsenic in Sichuan Province[J].Metal Mine,2015,44(1):67-71.
20 Wang Q , Hu X Z , Zi F T ,et al .Extraction of gold from refractory gold ore using bromate and ferric chloride solution[J].Minerals Engineering,2019,136:89-98.
[1] 梁昌金,马传净. 碘—氨浸出体系用于废旧印刷线路板中金的浸取[J]. 黄金科学技术, 2019, 27(5): 784-790.
[2] 欧阳臻,陈艺锋,胡宇杰,唐朝波,陈永明,叶龙刚. 金锑矿还原固硫焙烧—选冶联合提取研究[J]. 黄金科学技术, 2019, 27(3): 449-457.
[3] 冯博,彭金秀,张文谱,宁湘涵,罗国栋,李敬. 铂矿石选矿技术研究进展[J]. 黄金科学技术, 2018, 26(6): 788-794.
[4] 李和付,孙皞,叶国华,阙潇丰,王亚伟,陈阳,陈斌. 环保药剂“金蝉”取代氰化钠处理夏家店金矿的研究[J]. 黄金科学技术, 2018, 26(5): 682-688.
[5] 刘艳华,陈国宝,杨洪英,金哲男,王改荣. 毒砂机械活化性能及其浸出试验研究[J]. 黄金科学技术, 2018, 26(5): 669-676.
[6] 潘颢丹,杨洪英2,佟琳琳,李承卓,杜世麟,韩馨怡,韩爽. 初始pH值对ASH-07细菌生长和黄铜矿浸出过程的影响[J]. 黄金科学技术, 2018, 26(1): 115-123.
[7] 单召勇,周发军,朱宗波,殷晓斌. 火试金富集—电感耦合等离子体发射光谱法测定载金炭中金和银[J]. 黄金科学技术, 2017, 25(6): 108-113.
[8] 段敏静,梁长利,许宝泉,陈陵康 . 生物提金氧化液中铁的选择性沉淀[J]. 黄金科学技术, 2017, 25(6): 121-126.
[9] 杨玮,王刚,曹欢,张凯. 含铜金精矿焙烧—酸浸对金、银浸出率的影响[J]. 黄金科学技术, 2017, 25(5): 122-126.
[10] 涂玉波,韩培伟,付国燕,魏连启,仉小猛,于博,叶树峰. 不同胶凝材料对氰化废渣的固化性能研究[J]. 黄金科学技术, 2017, 25(5): 135-139.
[11] 王硕. 甘肃某金矿浸金工艺试验研究[J]. 黄金科学技术, 2017, 25(4): 122-127.
[12] 吴智,衷水平. 硫精矿有价金属综合回收技术研究与经济评价[J]. 黄金科学技术, 2017, 25(4): 93-98.
[13] 喻清,丁德馨,张炬,胡南,杨雨山,王浩. 微波辐照技术在矿业中的应用现状及发展趋势[J]. 黄金科学技术, 2017, 25(1): 112-120.
[14] 石贵明,赵捷明,吴彩斌,何水春. 四川某中基性岩浆岩型金矿选别试验研究[J]. 黄金科学技术, 2016, 24(6): 96-101.
[15] 田润青,刘云华,田民民,魏居珍,滕飞,李欢,李兴. 陕西某微细粒浸染型金矿选矿试验研究[J]. 黄金科学技术, 2016, 24(6): 102-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[2] 张渊, 张洪喜. 山东黄埠岭金矿7号脉地质特征及控矿机理研究[J]. J4, 2010, 18(4): 12 -16 .
[3] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .
[4] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[5] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1 -7 .
[6] 陈力子, 曹东宏, 杨登美. 陕西金龙山金矿古楼山矿段元素地球化学特征[J]. J4, 2011, 19(1): 28 -33 .
[7] 张志乾, 王建宁, 曲弘范. 华铜铜矿床成矿模式及其在外围成矿预测中的应用[J]. J4, 2011, 19(1): 38 -41 .
[8] 陈剑锋. 缅甸胶帕图金矿选冶工艺浅议[J]. J4, 2011, 19(1): 58 -60 .
[9] 刘洪君, 刘喜友. 额尔古纳——呼伦深断裂带的形成发展及其对矿产的控制作用[J]. J4, 2007, 15(1): 10 -13 .
[10] 王青山. 小宛南山金矿集中区控矿因素及找矿方向[J]. J4, 2008, 16(1): 28 -34 .