img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (5): 770-776.doi: 10.11872/j.issn.1005-2518.2019.05.770

• 采选技术与矿山管理 • 上一篇    下一篇

某含金原生矿石的工艺矿物学研究

张文平(),蔡明明,徐超   

  1. 山东黄金矿业科技有限公司选冶实验室分公司,山东 烟台 261441
  • 收稿日期:2018-08-19 修回日期:2019-03-14 出版日期:2019-10-31 发布日期:2019-11-07
  • 作者简介:张文平(1985-),男,山东滨州人,工程师,从事工艺矿物学与选冶工艺方面的研究工作。365206131@qq.com

Process Mineralogy of a Gold-bearing Primary Ore

Wenping ZHANG(),Mingming CAI,Chao XU   

  1. Metallurgical Laboratory Branch of Shandong Gold Mining Technology Co. ,Ltd. ,Yantai 261441,Shandong,China
  • Received:2018-08-19 Revised:2019-03-14 Online:2019-10-31 Published:2019-11-07

摘要:

某含金原生矿石的金品位为5.36×10-6,金是主要的目标回收矿物。为了查明影响选冶工艺指标的主要因素,对该矿石开展了工艺矿物学研究。通过矿物自动分析仪,对矿石的矿物组成、矿物嵌布特征、金的赋存状态、含金矿物的粒度和含金矿物解离度进行了系统研究,获得了目标矿物的工艺矿物学相关参数。研究结果表明:该矿石中主要金矿物是自然金和银金矿;矿石中金的粒度以细粒和微细粒为主,分别占49.43%和50.57%;金矿物的赋存状态以裸露金为主,占72.71%,包裹金占27.29%。通过分析研究结果得出:提高磨矿细度,使包裹金裸露出来,同时,在浸出之前,采取相应措施对毒砂进行氧化预处理,去除毒砂在浸金过程中的不利影响,有助于提高金的回收率。

关键词: 工艺矿物学, 金矿物, 赋存状态, 嵌布特征, 矿物组成, 粒度, 连生程度

Abstract:

The gold grade of a gold-bearing primary ore is 5.36×10-6.Through analysis,it is known that gold is the main recovery target.Because the process mineralogy information such as the type and content of gold-bearing minerals in the primary ore and the embedded state of target elements are not fully grasped, it is impossible to optimize and adjust the production process accurately and effectively.In order to deeply explore the distribution characteristics of target minerals in the primary ore and further find out the process mineralogical factors affecting the processing and metallurgical indexes,the process mineralogical characteristics of the ore was fully studied, such as the types and contents of gold-bearing minerals, the occurrence state and distribution characteristics of target minerals and elements.Based on the scanning electron microscopy (obtaining the backscatter electron image of minerals),an automatic mineral analyzer consisting of X-ray energy spectrometer (acquiring chemical composition information of minerals) and BPMA analysis software (combining image and composition information of minerals with data in mineral database,and statistic process mineralogical parameters of minerals in samples) was developed by Beijing Institute of Mining and Metallurgical Research.The system consists of eight modules as followed:measurement module,building small reservoir module,mineral matching module,mineral processing module,Block template supplement module,process mineralogy parameter calculation module,database editing module and auxiliary function module.The mineral composition,mineral distribution characteristics,occurrence state of gold,particle size of gold-bearing minerals and dissociation degree of gold-bearing minerals were systematically studied,and the relevant process mineralogy parameters of target minerals were obtained.The results show that the main gold minerals in the primary ore are natural gold and silver goldmine,as well as pyrite,magnetite,arsenopyrite,pyrrhotite and other metal minerals.The gangue minerals are mainly calcite,quartz,mica,dolomite and a small or trace amount of apatite, kaolinite and talc.The particle size of gold in the ore is mainly fine gold and fine gold,accounting for 49.43% and 50.57% respectively.The main embedding state of gold minerals is bare gold, accounting for 72.71% and encapsulated gold for 27.29%.The results show that increasing grinding fineness and exposing wrapped gold are helpful to improve gold recovery.At the same time, before leaching, some measures are adopted to oxidize arsenopyrite to remove its adverse effects in gold leaching process.

Key words: process mineralogy, gold mineral, existing state, dissemination feature, mineral composition, particle size, adhesion degree

中图分类号: 

  • TD953

表1

矿石化学成分分析结果"

元素质量分数/%元素质量分数/%
Au*5.36Ca13.15
Ag*3.92Fe15.89
C4.16Al1.23
Mg0.44As1.56
Si12.62Pb0.40
S12.78

表2

矿石中金的赋存状态分析结果"

物相类别质量分数/(×10-6分布率/%
合计5.36100.00
自然金中的金4.8590.48
银金矿中的金0.519.52

表3

矿石的矿物组成及相对含量"

矿物类型质量分数/%
合计100.00
金属矿物铁矿21.93
毒砂3.47
磁铁矿3.57
磁黄铁矿0.78
其他1.02
小计30.77
脉石矿物方解石30.68
石英22.78
云母类7.34
白云石类3.97
其他4.46
小计69.23

表4

自然金能谱定量分析结果"

序号元素质量分数/%序号元素质量分数/%
AuAgAuAg
184.1615.841798.891.11
291.428.581888.5411.46
386.4013.601984.9715.03
480.2719.732084.4315.57
585.9014.102187.8412.16
687.0412.962287.5112.49
790.819.192399.670.33
884.0415.962484.3315.67
997.362.642582.9617.04
1085.2014.802692.397.61
1183.3116.692789.1910.81
1280.6119.392895.294.71
1384.3415.662980.2219.78
1495.994.013090.169.84
1582.9117.093199.001.00
1699.790.21

表5

自然金粒度嵌布统计结果"

粒级/μm自然金
质量分数/%累积量/%
-20+1054.6354.63
-10+48.0262.65
-4+320.5983.25
-3+211.0094.25
-2+15.3499.59
-10.41100.00

图1

自然金的主要嵌布状态(a)矿石中的自然金与黄铁矿紧密连生;(b)矿石中与毒砂连生的自然金被黄铁矿包裹"

表6

银金矿能谱定量分析结果"

序号元素质量分数/%序号元素质量分数/%
AuAgAuAg
177.1922.81673.8526.15
277.7022.30775.5524.45
376.4823.52875.7424.26
474.3925.61978.5721.43
578.1221.881078.5121.49

表7

银金矿粒度嵌布统计结果"

粒级/μm银金矿
相对含量/%累积量/%
-10+426.1226.12
-4+344.5970.71
-3+220.0290.73
-2+18.7699.49
-10.51100.00

图2

银金矿的主要嵌布状态(a)矿石中的银金矿嵌布在毒砂裂隙中;(b)矿石中的银金矿与黄铁矿连生"

表8

含金矿物嵌布状态统计结果"

赋存类别赋存状态相对含量/%
合计100.00
包裹金脉石包裹0.80
金属矿物包裹23.83
晶间金脉石粒间0.35
金属矿物粒间2.31
连生金脉石裂隙3.29
金属矿物裂隙67.31
单体金-2.11

表9

矿石中黄铁矿粒度分布统计结果"

粒级/μm黄铁矿
相对含量/%正累积含量/%
+741.731.73
-74+535.657.38
-53+437.5814.97
-43+386.9421.90
-38+2036.7058.60
-20+1511.3569.95
-15+1011.5081.45
-10+510.4691.91
-58.09100.00

表10

矿石中毒砂粒度分布统计结果"

粒级/μm毒砂
相对含量/%正累积含量/%
-74+538.488.48
-53+439.4717.95
-43+382.3120.26
-38+2027.8448.09
-20+1514.8962.98
-15+1016.8579.83
-10+510.5190.34
-59.66100.00
1 周满赓.工艺矿物学在矿产资源找矿和综合利用中的应用[J].矿产综合利用,2012(3):7-9.
ZhouMangeng.Application of technological mineralogy in prospecting and comprehensive utilization of mineral resources[J].Multipurpose Utilization of Mineral Resources,2012(3):7-9.
2 王蓓,罗兴.工艺矿物学在选矿工艺研究中的作用及影响[J].矿物学报,2011(增1):730-732.
WangBei,LuoXing.The role and influence of technological mineralogy in the study of mineral processing technology[J].Journal of Minerals,2011Supp.1):730-732.
3 彭明生,刘晓文,刘羽,等.工艺矿物学近十年的主要进展[J].矿物岩石地球化学通报,2012,31(3):210-217.
PengMingsheng,LiuXiaowen,LiuYu,et al.The main advances of process mineralogy in China in the last decade[J].Bulletin of Mineralogy, Petrology and Geochemistry,2012,31(3):210-217.
4 张莉莉,梁冬云,李波,等.某铜硫尾矿中钨的工艺矿物学研究[J].中国钨业,2012,27(6):5-7.
ZhangLili,LiangDongyun,LiBo,et al.The process mineralogy of tungsten from a copper-sulfur tailings[J].China Tungsten Industry,2012,27(6):5-7.
5 马驰,卞孝东,王守敬,等.金矿石的工艺矿物学研究[J].黄金,2011,32(10):47-51.
MaChi,BianXiaodong,WangShoujing,et al.Research on process mineralogy of gold ore[J].Gold,2011,32(10):47-51.
6 杨洪英,巩恩普,杨立.低品位双重难处理金矿石工艺矿物学及浸金影响因素[J].东北大学学报(自然科学版),2008,29(12):1742-1745.
YangHongying,GongEnpu,YangLi.Process mineralogy of low-grade double refractory gold ore and influencing factor on gold leaching[J].Journal of Northeastern University(Natural Science),2008,29(12):1742-1745.
7 肖仪武,方明山,付强,等.工艺矿物学研究的新技术与新理念[J].矿产保护与利用,2018,6(3):49-54.
XiaoYiwu,FangMingshan,FuQiang,et al.New techniques and concepts in process mineralogy[J].Conservation and Utilization of Mineral Resources,2018,6(3):49-54.
8 GuY.Automated scanning electron microscope based mineral liberation analysis[J].Journal of Minerals and Materials Characterization and Engineering,2003,2(1):33-41.
9 贾木欣.国外工艺矿物学进展及发展趋势[J].矿冶,2007,16(2):95-99.
JiaMuxin.Process mineralogy progress and its trend abroad[J].Mining and Metallurgy,2007,16(2):95-99.
10 高歌,王艳.MLA自动检测技术在工艺矿物学研究中的应用[J].黄金,2015,36(10):66-69.
GaoGe,WangYan. Application of MLA automatic measurement technology in process mineralogy research[J].Gold,2015,36(10):66-69.
11 宋学文,朱加乾,罗增鑫,等.某氰渣工艺矿物学及金浮选工艺研究[J].黄金科学技术,2018,26(1):89-97.
SongXuewen,ZhuJiaqian,LuoZengxin,et al.Study on the gold flotation technology and process mineralogy of a cyanide residue[J].Gold Science and Technology,2018,26(1):89-97.
12 SmytheD M, LombardA, CoetzeeL L.Rare earth element deportment studies utilising QEMSCAN technology[J].Minerals Engineering,2013,52:52-61.
13 庞建涛,肖喆,王灿霞,等.MLA系统在磷块岩工艺矿物学研究中的应用[J].化工矿物与加工,2015, 44(10):19-21.
PangJiantao,XiaoZhe,WangCanxia,et al.MLA system's application in phosphate mineralogy study[J].Industrial Minerals and Processing,2015,44(10):19-21.
14 陈占华,陈湘清,李莎莎.澳大利亚昆士兰州某铝土矿工艺矿物学研究[J].矿产综合利用,2013(5):50-54.
ChenZhanhua,ChenXiangqing,LiShasha. Research on process mineralogy for a bauxite ore in Queensland,Australia[J].Comprehensive Utilization of Mineral Resources,2013(5):50-54.
15 王越,王婧,李潇雨,等.电子探针在本溪某深部铁矿石工艺矿物学研究中的应用[J].矿产综合利用,2018(5):109-113.
WangYue,WangJing,LiXiaoyu,et al.Application of EPMA in the processing mineralogy study of a deep iron ore in Benxi,Liaoning Province[J].Comprehensive Utilization of Mineral Resources,2018(5):109-113.
16 方明山,肖仪武,童捷矢.山东某金矿中金的赋存状态研究[J].矿冶,2012,21(3):91-94.
FangMingshan,XiaoYiwu,TongJieshi.Research on gold occurrence state of some gold ore in shandong[J].Mining and Metallurgy,2012,21(3):91-94.
17 方明山,肖仪武,童捷矢.某金矿工艺矿物学研究[C]//矿山深部找矿理论与实践暨矿山工艺矿物学研究学术交流论文集.北京:冶金工业出版社,2012:341-347.
FangMingshan,XiaoYiwu,TongJieshi.Technological mineralogy of a gold mine[C]//Proceedings of the Academic Exchange of Prospecting Theory and Practice in Deep Mines, Research and Mineralogy of Mining Technology.Beijing:Metallurgical Industry Press,2012:341-347.
18 ChenW T,ZhouM F,LiX C.In-situ LA-ICP-MS trace elemental analyses of magnetite:Cu-(Au,Fe) deposits in the Khetri copper belt in Rajasthan Province,NW India[J].Ore Geology Reviews,2015,65:929-939.
19 王竹萌, 贾木欣, 应平,等.工艺矿物学参数自动测量技术研究[J].中国矿业,2015,24(增2):205-208,212.
WangZhumeng,JiaMuxin,YingPing,et al. Research into the automatic measurement technology of process mineralogy parameters[J].China Mining Industry,2015,24(Supp.2):205-208,212.
20 贾木欣, 周俊武, 应平,等.工艺矿物学自动测试系统BPMA的研制及应用[J].有色冶金设计与研究,2017,38(4):1-12,16.
JiaMuxin,ZhouJunwu,YingPing,et al. Development and application of bgrimm process mineralogy analyzing system (BPMA)[J]. Nonferrous Metals Engineering and Research,2017,38(4):1-12,16.
21 王清.基于Thermo Fisher能谱仪的工艺矿物学自动分析系统[J].冶金自动化,2018(增2):11-14.
WangQing.Automatic analysis system of process mineralogy based on Thermo Fisher energy spectrometer[J].Metallurgical Automation,2018(Supp.2):11-14.
22 贾木欣, 应平, 付强.从工艺矿物学角度探讨某些难处理资源开发利用中的问题[J].有色金属(选矿部分),2015(2):1-4,10.
JiaMuxin,YingPing,FuQiang.Discussion on certain problems on the utilization of some kinds of ore from the view of process mineralogy[J].Nonferrous Metals (Mineral Processing Section),2015(2):1-4,10.
[1] 刘子龙,杨洪英,佟琳琳,陈国宝. 高海拔环境下氧化铜矿浮选优化试验研究[J]. 黄金科学技术, 2019, 27(4): 589-597.
[2] 黄胤淇,肖庆飞,郭运鑫,王旭东. 江西某铜矿磨矿对比试验及应用研究[J]. 黄金科学技术, 2019, 27(2): 278-284.
[3] 唐浪峰,盛秋月,马英强,印万忠. 非洲中南部某镍矿石工艺矿物学性质[J]. 黄金科学技术, 2019, 27(2): 285-291.
[4] 宋学文,朱加乾,罗增鑫,陈波. 某氰渣工艺矿物学及金浮选工艺研究[J]. 黄金科学技术, 2018, 26(1): 89-97.
[5] 雷阿丽,吴彩斌,叶景胜,江领培,倪帅男,何水春. 顽石作磨矿介质下含金铜硫矿的磨矿规律研究[J]. 黄金科学技术, 2017, 25(1): 121-126.
[6] 张术根,刘炫,刘纯波,黄超文. 云南新山金矿床金矿物形貌成分特征及矿床成因意义[J]. 黄金科学技术, 2016, 24(4): 1-9.
[7] 杨宝荣,马忠贤,熊生云 . 青海都兰哈西哇金多金属矿床有用矿物赋存状态研究[J]. 黄金科学技术, 2016, 24(3): 52-57.
[8] 田向盛,第鹏飞,刘东晓,王建飞,何广武. 甘肃加甘滩金矿床金的赋存状态研究[J]. 黄金科学技术, 2016, 24(3): 40-51.
[9] 陈道前,傅开彬,董发勤,胡如权,邓全淋,徐龙华,张亚龙,杨永强. 四川里伍铜矿多金属低品位尾矿工艺矿物学研究[J]. 黄金科学技术, 2015, 23(6): 70-74.
[10] 雷慈坤,唐谷清,赵海燕,黄锦锦,孙春霞. 内蒙古翁牛特旗张家沟银矿床地质特征及银赋存状态研究[J]. 黄金科学技术, 2014, 22(4): 14-19.
[11] 马玉天,陈大林,陈治毓,钟清慎,黄虎军,杜彦君. 高砷高硫难处理金精矿预处理工艺研究[J]. 黄金科学技术, 2014, 22(4): 103-107.
[12] 林鸿汉. 某含金铜废石资源化利用试验研究[J]. 黄金科学技术, 2014, 22(3): 77-81.
[13] 曹成超. 新疆某矿山浮选试验研究[J]. 黄金科学技术, 2014, 22(3): 70-76.
[14] 姚福善. 大型塔式磨机在金精矿氰化细磨中的应用[J]. 黄金科学技术, 2014, 22(3): 82-85.
[15] 周有勤. 金的地质冶金学及其应用[J]. 黄金科学技术, 2013, 21(5): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[2] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[3] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[4] 冷寒松, 邓尧增, 胥华龙, 刘涛, 王卓. 有底柱分段崩落采矿法在焦家金矿的研究与应用[J]. J4, 2010, 18(4): 65 -67 .
[5] 黄建军, 李天恩, 范红科. 大兴安岭地区金(银)多金属矿成矿地质背景及找矿潜力的探讨[J]. J4, 2010, 18(6): 13 -17 .
[6] 胡琴霞, 陈凯, 陈超, 张圣潇. 广东那程银金矿床地质特征及成矿规律浅析[J]. J4, 2011, 19(1): 16 -20 .
[7] 陈力子, 曹东宏, 杨登美. 陕西金龙山金矿古楼山矿段元素地球化学特征[J]. J4, 2011, 19(1): 28 -33 .
[8] 路仁江, 刘鹏金, 娄伟华. 高水固结充填采矿法工艺创新与应用[J]. J4, 2011, 19(1): 51 -54 .
[9] 白复锌, 王善功, 安智海. 地下矿山开采三维可视化系统在鑫汇金矿的应用[J]. J4, 2011, 19(1): 55 -57 .
[10] 康明,马孟浩. CHIM法在区域性勘察阶段的应用研究[J]. J4, 2008, 16(1): 1 -6 .