img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (5): 722-730.doi: 10.11872/j.issn.1005-2518.2019.05.722

• 采选技术与矿山管理 • 上一篇    下一篇

蚀变带内矿体开采中人工假底的应用研究

宋恩祥1(),李强2,张静3(),彭康3,4   

  1. 1. 嵩县山金矿业有限公司,河南 嵩县 471400
    2. 山东黄金集团中华矿业事业部,山东 济南 250010
    3. 重庆大学资源与安全学院,重庆 400044
    4. 重庆大学煤矿灾害动力学与控制国家重点实验室,重庆 400044
  • 收稿日期:2018-10-29 修回日期:2019-06-10 出版日期:2019-10-31 发布日期:2019-11-07
  • 通讯作者: 张静 E-mail:309647732@qq.com;20172002022t@cqu.edu.cn
  • 作者简介:宋恩祥(1989-),男,山东济宁人,工程师,从事采矿技术管理工作。309647732@qq.com
  • 基金资助:
    重庆市科技计划项目基础科学与前沿技术研究专项“动静荷载作用下深部含瓦斯煤体失稳破坏机理研究”(Cstc2018jcyjAX0387)

Research and Application of Artificial False Bottom in Mining of Orebody in Alteration Zone

Enxiang SONG1(),Qiang LI2,Jing ZHANG3(),Kang PENG3,4   

  1. 1. Songxian Shanjin Mining Co. ,Ltd. ,Songxian 471400,Henan,China
    2. Department of Business Management,Shandong Gold Group Co. ,Ltd. , Jinan 250010,Shandong, China
    3. School of Resources and Safety Engineering,Chongqing University,Chongqing 400044,China
    4. State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,Chongqing 400044,China
  • Received:2018-10-29 Revised:2019-06-10 Online:2019-10-31 Published:2019-11-07
  • Contact: Jing ZHANG E-mail:309647732@qq.com;20172002022t@cqu.edu.cn

摘要:

针对嵩县山金矿业有限公司主矿体位于矿区构造破碎带内,前期采用上向进路充填采矿法对其进行开采时留下了高品位顶底矿柱的开采难题,矿山提出通过在各中段间施工人工假底来对这部分高品位矿柱进行回收。因此,为保证顶底柱回采稳定性和矿石回收率,建立了人工假底薄“板”力学模型,应用弹性力学理论对其失稳机理进行分析;同时在人工假底厚度确定的情况下采用安全系数法分析了进路宽度与高度对进路稳定性的影响,确定安全合理的进路宽度为3.5~4.0 m,高度为3.0~4.0 m;再对人工假底进行配筋设计,并对金属网在人工假底中不同位置时假底位移及应力场变化进行数值模拟分析,得到最安全合理的铺设位置为人工假底中部。将研究结果应用到工程实践中,结果表明人工假底的应用使矿山顶底柱得到安全高效的回采。

关键词: 构造蚀变带, 进路充填采矿法, 人工假底, 失稳机理, 安全系数法, 数值模拟, 力学模型, 金属网

Abstract:

The main orebody of the mining area of Songxian Shanjin Mining Co. Ltd. is located in the M1 structural alteration zone and it is strictly controlled by the structural fracture zone.Its occurrence is basically consistent with the M1 structural alteration zone,which is a moderately stable orebody and due to the roof.The rock mass is broken,and the mining area is mainly developed by the upward approach filling method,so the high-grade top and bottom pillars are left behind.In order to ensure the stability of the stope,the top and bottom columns between the middle sections are effectively recovered,and the utilization rate of the orebody is improved.The mine design shall be constructed with artificial false bottoms after the end of the mining in the middle section,and the top and bottom pillars shall be recovered under the artificial false bottom.In order to ensure the recovery stability and ore recovery rate of the bottom and bottom columns under artificial false bottom,a manual false bottom plate mechanical model was established for the artificial false bottom approach,and the instability mechanism was analyzed by the theory of elastic mechanics.When the two sides of the column are filled with the filling body,the artificial false bottom of the roadway is known as the “soft-supported weak plate” structure,and it is easy to cause bending and tensile failure in the middle of the road top plate;and the safety factor is adopted in the case where the artificial false bottom thickness is determined.The method analyzes the influence of the width and height of the approach on the stability of the approach,and determines the safe and reasonable approach width of 3.5~4.0 m and the height of 3.0~4.0 m.According to the strength requirements and the results of the strength test of the mine backfill,the filling is carried out.The calculation of the reinforcement calculation at the bottom of the body is carried out by using a 1∶8 C-material cemented backing body,and the Φ12 mm steel bar with a mesh size of 300 mm×300 mm can increase the tensile strength of the artificial false bottom.The reinforcement design is carried out at the bottom,and the numerical simulation analysis of the false bottom displacement and the stress field change of the metal mesh at different positions in the artificial false bottom is carried out,and the safest and most reasonable laying position is the middle of the artificial false bottom.The findings applied to engineering practice,the results showed that the application of artificial false bottom of the top-pillar mines safe and effective mining.

Key words: structural alteration zone, drift filling mining method, artificial false bottom, instability mechanism, safety factor method, numerical simulation, mechanical model, metal mesh

中图分类号: 

  • TD853

图1

人工假底力学模型"

图2

薄“板”承受层受力分析图"

图3

进路薄“板”的“软支弱板”结构破坏形式"

表1

进路最大半宽要求"

安全

系数

进路最大半宽要求l /m
h=0.3h=0.4h=0.5h=0.6h=0.7h=0.8h=0.9h=1.0h=1.1
η=1.02.32.42.52.62.8>2.0>2.8>2.8>2.8
η≥2.01.81.91.92.02.02.12.12.22.2

图4

人工假底厚度h=0.3 m(a)和h=0.3~1.1 m(b)时l-η曲线图"

表2

进路最大高度要求"

安全

系数

进路最大高度要求M/m
h=0.3h=0.4h=0.5h=0.6h=0.7h=0.8h=0.9h=1.0h=1.1
η=2.03.23.43.84.04.44.85.0>5.0>5.0
η=1.04.85.0>5.0>5.0>5.0>5.0>5.0>5.0>5.0

图5

人工假底厚度h=0.6 m(a)和h=0.3~1.1 m(b)时M-η曲线图"

图6

尾砂胶结充填体人工假底钢筋网布置示意图"

表3

材料物理力学参数"

材料密度/(kg·m-3弹性模量/MPa泊松比抗压强度/MPa黏聚力/MPa摩擦角/(°)
1∶8充填体1 7601100.1440.3018
Φ12 mm钢筋7 8002.0×1050.20-200-

图7

方案1(a)、方案2(b)z方向位移等值线和人工假底底部(c)z方向位移"

图8

方案1(a)、方案2(b)人工假底充填体和人工假底底部充填体(c)最大主应力"

图9

方案1(a)和方案2(b)金属网最大拉应力图"

图10

金属网横向钢筋(a)和纵向钢筋(b)最大拉应力"

图11

进路回采揭露的假底"

1 彭康,李夕兵,彭述权,等. 海底下框架式分层充填法开采中矿岩稳定性分析[J]. 中南大学学报(自然科学版),2011,42(11):3452-3458.
PengKang,LiXibing,PengShuquan,et al. Ore-rock stability of frame stope hierarchical level filling mining method in seabed mining[J].Journal of Central South University(Science and Technology),2011,42(11):3452-3458.
2 彭康,李夕兵,彭述权,等.海下点柱式开采的有限元动态模拟分析[J]. 金属矿山,2009,39(10):59-62.
PengKang,LiXibing,PengShuquan,et al. FE dynamic simulation analysis of in under-sea point pillar mining [J]. Metal Mine,2009,39(10):59-62.
3 刘志义,甘泽,甘德清,等.近海矿体开采人工假底厚度优化及工程应用[J]. 金属矿山,2016,45(8):54-57.
LiuZhiyi,GanZe,GanDeqing,et al.Thickness optimization and engineering application of artificial false bottom in offshore ore mining[J].Metal Mine,2016,45(8):54-57.
4 王泽伟,彭康,徐欣,等.胶结充填体下顶底柱进路开采参数优选[J]. 矿冶工程,2014,4(4):11-15.
WangZewei,PengKang,XuXin,et al.Parameter optimization for pillars robbing under cemented filling body [J]. Mining and Metallurgical Engineering,2014,4(4):11-15.
5 唐俊智,王江波,林洪勇.人工假底假巷在中薄脉金矿中的应用[J]. 黄金科学技术,2008,16(3):45-48.
TangJunzhi,WangJiangbo,LinHongyong. Application of artificial concrete-bottom and concrete-lane in the thin vein of gold mine[J].Gold Science and Technology,2008,16(3):45-48.
6 马明辉,朱明德,陈自辉,等.三山岛金矿无架腿支护技术研究与应用[J].黄金科学技术,2017,25(5):67-72.
MaMinghui,ZhuMingde,ChenZihui,et al.Research and application of support technology without legs in Sanshandao gold mine [J]. Gold Science and Technology,2017,25(5):67-72.
7 陈玉山,王立君,尹剑飞,等.无轨机械化盘区点柱式充填采矿法实践[J].黄金科学技术,2002,10(4):7-12.
ChenYushan,WangLijun,YinJianfei,et al.The practice of mining method for trackless mechanisation panel pillar filling[J]. Gold Science and Technology,2002,10(4):7-12.
8 高谦.地下大跨度采场围岩突变失稳风险预测[J]. 岩土工程学报,2000,22(5):523-526.
GaoQian.Instability forecast and risk evaluation of the surrounding rock masses for a large space stope [J]. Chinese Journal of Geotechnical Engineering,2000,22(5):523-526.
9 TesarikD R,SeymourJ B,YanskeT R.Long-term stability of a backfilled room-and-pillar test section at the Buick Mine,Missouri,USA [J]. International Journal of Rock Mechanics and Mining Sciences,2008,46(7):1182-1196.
10 WangX B,YangX B,ZhangZ H,et a1.Dynamic analysis of fault rock burst based on gradient-dependent plasticity and energy criterion[J].Journal of University of Science and Technology Beijing,2004,11(1):5-9.
11 彭康,李夕兵,彭述权,等.基于响应面法的海下框架式采场结构优化选择[J].中南大学学报(自然科学版),2011,42(8):2417-2422.
PengKang,LiXibing,PengShuquan,et al.Optimization of frame stope structure parameters based on response surface method in under-sea mining[J].Journal of Central South University(Science and Technology),2011,42(8):2417-2422.
12 O’HearnB,SwanG.The use of models in sill mat design at Falconbridge[C]//Innovations in Mining Backfill Technology:Proceedings of the 4th International Symposium on Mining with Backfill.Brookfield,USA:AA Balkema Publishers,1989:139-146.
13 顾伟,张立亚,谭志祥,等.基于弹性薄板模型的开放式充填顶板稳定性研究[J].采矿与安全工程学报,2013,30(6):886-891.
GuWei,ZhangLiya,TanZhixiang,et al.Study on roof stability of open backfilling based on elastic plate model [J]. Journal of Mining & Safety Engineering,2013,30(6):886-891.
14 范文录,李夕兵,周子龙.基于可靠度理论的钢筋混凝土假顶强度确定与配筋设计研究[J].矿冶工程,2013,33(4):30-35.
FanWenlu,LiXibing,ZhouZilong.Strength determination for reinforced concrete false roof and reinforcement design based on reliability theory[J].Mining and Metallurgical Engineering,2013,33(4):30-35.
15 尚雪义,李夕兵,彭康,等.基于安全系数和可靠度的极破碎矿体进路优化[J].中南大学学报(自然科学版),2016,47(7):2390-2397.
ShangXueyi,LiXibing,PengKang,et al.Optimization of drift in extremely fractured ore-body based on safety coefficient and reliability analysis [J]. Journal of Central South University(Science and Technology),2016,47(7):2390-2397.
16 李夕兵,范文录,胡国宏.急倾斜破碎矿体采矿方法改进与顶板再造设计[J].科技导报,2012,30(13):44-48.
LiXibing,FanWenlu,HuGuohong.Improvement of steep and fractured ore-body mining method and design of re-construction of sub-top[J].Science and Technology Review,2012,30(13):44-48.
17 中华人民共和国建设部.建筑结构可靠度设计统一标准:GB50068-2018[S].北京:中国建筑工业出版社,2018.
People's Republic of China Ministry of Consturction.Uniform Standard for reliability of building structures:GB50068-2018[S].Beijing:China Building Industry Press,2018.
18 HughesP,PakalnisR,CaceresC,et al.Numerical modeling of paste sills in underhand cut & fill stopes[C]//Third International Seminar on Deep and High Stress Mining.Quebec:Canadian Institute of Mining,Metallurgy and Petroleum,2006:1-10.
19 李夕兵,刘志祥,彭康,等.金属矿滨海基岩开采岩石力学理论与实践[J].岩石力学与工程学报,2010,29(10):1945-1953.
LiXibing,LiuZhixiang,PengKang,et al.Theory and practice of rock mechanics related to exploitation of undersea metal mine [J].Chinese Journal of Rock Mechanics and Engineering,2010,29(10):1945-1953.
20 PengK,YinX Y,YinG Z,et al.Galerkin solution of Winkler foundation-based irregular Kirchhoff plate model and its application in crown pillar optimization[J].Journal of Central South University,2016,23(5):1253-1263.
21 MatsuiT,SanK C.Finite element slope stability analysis by sheer strength reduction technique [J].Soils and Foundations,1992,32(1):59-70.
[1] 田军, 刘建坡, 杨勇, 张长银. 进路充填法爆破扰动诱发充填体破坏规律研究[J]. 黄金科学技术, 2019, 27(5): 687-695.
[2] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[3] 梁瑞,俞瑞利,周文海,黄小彬,王建勇,熊征宇. 空气间隔装药爆破模型在矿房回采中的应用[J]. 黄金科学技术, 2019, 27(3): 358-367.
[4] 秦世康,陈庆发,尹庭昌. 岩石与岩体冻融损伤内涵区别及研究进展[J]. 黄金科学技术, 2019, 27(3): 385-397.
[5] 刘锋,王昭坤,马凤山,王波,王剑波,董春蕾. 矿山深部卸压技术研究现状及展望[J]. 黄金科学技术, 2019, 27(3): 425-432.
[6] 王春,王成,熊祖强,程露萍,王怀彬. 动力扰动下深部出矿巷道围岩的变形特征[J]. 黄金科学技术, 2019, 27(2): 232-240.
[7] 方传峰,王晋淼,李剡兵,贾明涛. 基于PFC2D-DFN的自然崩落法数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 189-198.
[8] 吕闹,汪海波. 厚硬顶板弱化前后垮落致灾数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 257-264.
[9] 王从陆,李童. 基于Ventsim的深井线性热源对有效通风量的影响分析[J]. 黄金科学技术, 2019, 27(2): 271-277.
[10] 李响,怀震,李夕兵,张倬瑶. 基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究[J]. 黄金科学技术, 2019, 27(1): 41-51.
[11] 陈冲,李夕兵,冯帆. 诱导巷道的围岩松动破坏区数值研究[J]. 黄金科学技术, 2018, 26(6): 771-779.
[12] 刘连生,钟清亮,闫雷,钟文,梁龙华. 频繁生产爆破加载下饱水岩体累积损伤效应声波测试研究[J]. 黄金科学技术, 2018, 26(6): 750-760.
[13] 秦秀山,曹辉,原野,郑志杰. 基于双控张拉锚索束的溜井井壁垮塌修复方法[J]. 黄金科学技术, 2018, 26(6): 744-749.
[14] 彭博. 库水位骤降耦合不同类型降雨泥岩边坡渗透稳定性数值模拟研究[J]. 黄金科学技术, 2018, 26(5): 647-655.
[15] 李光,马凤山,刘港,郭捷,郭慧高,寇永渊. 金川矿区深部巷道支护效果评价及参数优化研究[J]. 黄金科学技术, 2018, 26(5): 605-614.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[2] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[3] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .
[4] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[5] 衣存昌, 臧恩光. 黑龙江老柞山金矿成矿规律及深部找矿探讨[J]. J4, 2010, 18(4): 58 -61 .
[6] 冷寒松, 邓尧增, 胥华龙, 刘涛, 王卓. 有底柱分段崩落采矿法在焦家金矿的研究与应用[J]. J4, 2010, 18(4): 65 -67 .
[7] 黄建军, 李天恩, 范红科. 大兴安岭地区金(银)多金属矿成矿地质背景及找矿潜力的探讨[J]. J4, 2010, 18(6): 13 -17 .
[8] 白复锌, 王善功, 安智海. 地下矿山开采三维可视化系统在鑫汇金矿的应用[J]. J4, 2011, 19(1): 55 -57 .
[9] 康明,马孟浩. CHIM法在区域性勘察阶段的应用研究[J]. J4, 2008, 16(1): 1 -6 .
[10] 谢贵明. 对矿业权价值和价款的思考[J]. J4, 2008, 16(1): 58 -61 .