img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (5): 687-695.doi: 10.11872/j.issn.1005-2518.2019.05.687

• 采选技术与矿山管理 • 上一篇    下一篇

进路充填法爆破扰动诱发充填体破坏规律研究

田军1(),刘建坡1,2(),杨勇3,张长银1   

  1. 1. 东北大学深部金属矿山安全开采教育部重点实验室,辽宁 沈阳 110819
    2. 山东黄金集团有限公司,山东 济南 250014
    3. 山东黄金集团有限公司焦家金矿,山东 莱州 261441
  • 收稿日期:2018-09-23 修回日期:2019-01-11 出版日期:2019-10-31 发布日期:2019-11-07
  • 通讯作者: 刘建坡 E-mail:tianjun@mail.neu.edu.cn;liujianpo@mail.neu.edu.cn
  • 作者简介:田军(1962-),男,辽宁建平人,高级工程师,从事矿山开采及岩体力学研究工作。tianjun@mail.neu.edu.cn
  • 基金资助:
    国家重点研发计划课题“深部大矿段采动环境监测及地压动态调控技术”(2017YFC0602904);中国博士后科学基金面上基金项目“含恒应力过程的加卸载条件下硬岩声发射活动特征研究”(2017M612302)

Study on the Failure Law of Backfill Induced by Blasting Disturbance During Cut and Fill Mining Process

Jun TIAN1(),Jianpo LIU1,2(),Yong YANG3,Changyin ZHANG1   

  1. 1. Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines,Northeastern University,Shenyang 110819,Liaoning,China
    2. Shandong Gold Group Co. ,Ltd. ,Jinan 250014,Shandong,China
    3. Jiaojia Gold Mine,Shandong Gold Group Co. ,Ltd. ,Laizhou 261441,Shandong,China
  • Received:2018-09-23 Revised:2019-01-11 Online:2019-10-31 Published:2019-11-07
  • Contact: Jianpo LIU E-mail:tianjun@mail.neu.edu.cn;liujianpo@mail.neu.edu.cn

摘要:

针对焦家金矿进路充填法爆破扰动诱发充填体破坏严重的问题,基于Mises屈服准则确定充填体破坏阈值,采用LS-DYNA软件对炮孔距充填体距离、充填体养护龄期与充填体破坏范围之间的关系进行了数值模拟研究。结果表明:充填体的破坏范围与炮孔距充填体距离(孔边距)呈线性关系,随着孔边距的增加,充填体的破坏范围逐渐减小;充填体的破坏范围与其养护龄期密切相关,随着养护龄期的增加,充填体的破坏范围逐渐减小,且超过7 d养护龄期后,充填体的破坏范围受爆破扰动影响明显减弱。该研究成果为现场爆破参数优化和回采时间的确定提供了理论依据。

关键词: 爆破扰动, 充填体破坏, 数值模拟, 养护龄期, 炮孔布置, Mises屈服准则

Abstract:

During the mining process by using cut and fill method in Jiaojia gold mine,the blasting compensation space is obtained by squeezing the backfill to avoid cutting holes and improve the mining efficiency. As a result,the strength and self-reliance of backfill are obviously reduced.In addition,due to the heavy production task,the stopes are usually mined while backfill be cured only two or three days.As the insufficient curing,the strength of backfill cannot reached its designed value.Therefore,large scale collapses of backfill are easily occurred during mining process,which impact the safety of operators and equipment.At the same time,the backfill mixed into the ore that results in ore dilution and higher processing cost.To resolve the problems of backfill serious damaged by blasting disturbance and unreasonable design of blasting parameters,numerical studies were carried out by use of LS-DYNA software.The influence factors of backfill damage,including the layout of blast holes and the curing age of backfill,have been analyzed. Mises yield criterion was used to determine the threshold of backfill damage by analyzing Mises effective stress distribution in backfill body. The results show that the damage area of backfill determined by comparing the dynamic tensile strength of backfill with the effective peak stress is feasible. The backfill damage area is closely related with the position of blast holes,and show a negative linear relationship between them,i.e.,the closer of the blast holes to the backfill,the greater damage of the backfill. When the distances between blast hole and backfill increased from 0.2 m to 0.8 m,the damage area of backfill decreased from 1.48 m2 to 0.74 m2. Based on the blasting theory,the process of fracture zone induced by blasting can be divided into two phases. First,the shock wave energy would cause cracks generated around the hole. Then,the quasi-static pressure from the gaseous explosive energy result in the propagation of cracks. The reasonable distance between blast hole and backfill obtained from blasting theory is consistent with the result obtained by numerical simulation. The curing age is deeply influence the backfill damage characteristics. With the curing age prolongs,the damage range of the backfill gradually decreases. Seven days is an important time to influence the strength of backfill. When the curing age of backfill is more than 7 days,the damage zone of backfill remarkably decrease,and vice versa.Take the distance of blast hole is 0.5 m from backfill as an example,backfill damage areas decreased from 2.94 m2 to 0.93 m2 with its curing age prolonged from 3 days to 28 days. According to the above research results,the blast holes arranged from 0.3 m to 0.6 m to backfill and the backfill cured at least 7 days are recommended.

Key words: blasting disturbance, backfill damage, numerical simulation, curing age, blast hole layout, Mises yield criterion

中图分类号: 

  • TD853

图1

爆破扰动诱发充填体破坏范围"

图2

孔边距为0.3 m的计算模型"

表1

炸药参数"

参数名称炸药参数值参数名称炸药参数值
密度/(kg·m-31 244R14.2
爆速/(m·s-14 200R20.9
爆压/GPa3.16ω0.15
A/GPa214.4E/GPa4.192
B/GPa0.182

表2

充填体和矿体材料参数"

参数名称充填体参数值(28 d)矿体参数值
密度/(kg·m-31 8002 700
弹性模量/GPa0.6520
泊松比0.220.27
屈服强度/MPa1.515
切线模量/GPa0.0652
抗压强度/MPa1.815
C2.5
P4
硬化指数0.5
失效应变0.8

图3

孔边距为0.3 m时的有效应力波传播过程"

图4

不同孔边距条件下充填体的破坏深度"

图5

充填体破坏范围与孔边距的关系"

图6

充填体动态抗拉强度变化规律"

图7

不同养护龄期条件下充填体的破坏深度"

图8

充填体破坏面积与养护龄期的关系"

1 国家安全生产监督管理总局.爆破安全规程:GB6722-2003[S]. 北京:中国标准出版社,2003.
State Administration of Work Safety. Blasting Safety Regulations:GB6722-2003[S].Beijing:Standards Press of China,2003.
2 刘建坡,许宏亮,王少泉,等.多点爆破震动速度衰减规律研究[J]. 金属矿山,2015,44(10):24-28.
LiuJianpo,XuHongliang,WangShaoquan,et al. Study on velocity attenuation law for multi-point blasting vibration[J]. Metal Mine,2015,44(10):24-28.
3 张继春,彭琼芳.岩体爆破地震波衰减规律的现场试验与分析[J].辽宁工程技术大学学报(自然科学版),2001,20(4):399-401.
ZhangJichun,PengQiongfang.Field experiment and its analyses of attenuation law for seismic waves resulting from rock blasting[J].Journal of Liaoning Techinical University(Natural Science),2001,20(4):399-401.
4 李洪涛,舒大强.爆破震动衰减规律的影响因素[J]. 武汉大学学报(工学版),2005,38(1):79-82.
LiHongtao,ShuDaqiang.Influential factors analysis of blasting vibration attenuation law[J].Engineering Journal of Wuhan University,2005,38(1):79-82.
5 汪海波,魏国力,宗琦,等.节理发育岩体巷道掘进爆破数值模拟与应用研究[J]. 黄金科学技术,2018,26(3):342-348.
WangHaibo,WeiGuoli,ZongQi,et al. Numerical simulation and application research on joint development rock roadway blasting excavation[J].Gold Science and Technology,2018,26(3):342-348.
6 王长柏,李海波,谢冰,等.岩体爆破裂纹扩展影响因素分析[J]. 煤炭科学技术,2010,38(10):31-34.
WangChangbai,LiHaibo,XieBing,et al. Analysis on influencing factors of blasting crack expansion [J].Coal Science and Technology,2010,38(10):31-34.
7 俞杨明,祁建东,叶昀,等.利用数值模拟技术优化光面爆破炮孔间距[J]. 金属矿山,2013,42(8):38-41.
YuYangming,QiJiandong,YeYun,et al. Optimizing the smooth blasting hole spacing with numerical simulation technology [J]. Metal Mine,2013,42(8):38-41.
8 李娜,周科平.中深孔爆破动载荷下块石充填体强度响应研究[J]. 矿冶工程,2011,34(4):9-13.
LiNa,ZhouKeping. Study on intensity response of rubble backfill to dynamic loading of medium-length hole blasting[J].Mining and Metallurgical Engineering,2011,34(4):9-13.
9 刘尤平,龚敏,黄刚海.深孔爆破装药结构优选数值分析方法及其应用[J].岩土力学,2012,33(6):1883-1888.
LiuYouping,GongMin,HuangGanghai. Numerical analysis method for optimizing charging structure of deep-hole blasting and its application[J].Rock and Soil Mechanics,2012,33(6):1883-1888.
10 董凯程.爆破地震对充填体影响与控制技术研究[D]. 长沙:中南大学,2010.
DongKaicheng.Research on the Influence and Control Techniques of Blasting Seismic Wave on Backfill [D].Changsha:Central South University,2010.
11 胡桂英,刘科伟,杜鑫,等.光面掏槽爆破技术的研究及其在巷道掘进中的应用[J].黄金科学技术,2018,26(3):349-356.
HuGuiying,LiuKewei,DuXin,et al.Research on smooth-cutting method and its application in tunnel excavation [J].Gold Science and Technology,2018,26(3):349-356.
12 夏祥,李海波,李俊如,等.岩体爆生裂纹的数值模拟[J]. 岩土力学,2006,27(11):1987-1991.
XiaXiang,LiHaibo,LiJunru,et al.Numerical simulation of blast-induced cracks in rock[J]. Rock and Soil Mechanics,2006,27(11):1987-1991.
13 王洋,叶海旺,李延真.裂隙岩体爆破数值模拟研究[J]. 爆破,2012,29(3):20-22.
WangYang,YeHaiwang,LiYanzhen. Numerical simulation on jointed and fractured rock blasting [J]. Blasting,2012,29(3):20-22.
14 王正波,禹海涛,袁勇.地下结构内部爆炸问题的数值建模及分析[J]. 地下空间与工程学报,2011,7(增1):1324-1328.
WangZhengbo,YuHaitao,YuanYong. Study on numerical simulation method of internal blast problems in underground structures[J].Chinese Journal of Underground Space and Engineering,2011,7(Supp.1):1324-1328.
15 喻智.水介质耦合小药柱间隔装药爆破理论与技术研究[D]. 湘潭:湖南科技大学,2017.
YuZhi. Theory and Technology Research on Water Medium Coupling Interval Charging Blasting with Small Diameter Explosive[D].Xiangtan:Hunan University of Science and Technology,2017.
16 郑峰.爆破地震效应影响因素的研究及工程应用[D]. 武汉:武汉科技大学,2007.
ZhengFeng. Study and Application on Influence Factors for the Blasting Seismic Effect [D].Wuhan:Wuhan University of Science and Technology,2007.
17 彭建宇,李元辉,张凤鹏,等.单向静载下柱状药包爆破裂纹扩展规律及机制[J]. 中国矿业,2017,26(1):88-91.
PengJianyu,LiYuanhui,ZhangFengpeng,et al. Crack propagation rule and mechanism of cylindrical blasting under uniaxial static load[J].China Mining Magazine,2017,26(1):88-91.
18 王鹏,周传波,耿雪峰,等.多孔同段爆破漏斗形成机理的数值模拟研究[J]. 岩土力学,2010,31(3):993-997.
WangPeng,ZhouChuanbo,GengXuefeng,et al. Numerical simulation of formation mechanism of multi hole and same delay time of blasting crater [J]. Rock and Soil Mechanics,2010,31(3):993-997.
19 周传波.深孔爆破一次成井模拟优化与应用研究[D]. 武汉:中国地质大学,2004.
ZhouChuanbo.Study on Simulation Optimization and Application of Shaft Formation by One Deep-hole Blasting[D]. Wuhan:China University of Geosciences,2004.
20 刘智权.大间距无底柱分段崩落法回采爆破参数的研究[D]. 武汉:武汉科技大学,2005.
LiuZhiquan. The Research of Stope Blasting Parameter in Sublevel Caving Method with Large Space Between [D]. Wuhan:Wuhan University of Science and Technology,2005.
21 吕兆恒.半煤岩巷快速掘进参数优化及施工组织技术研究[D]. 焦作:河南理工大学,2012.
ZhaohengLü.Study on Parameters Optimization and Construction Organization Technology of Rapid Excavation in Coal-rock Roadways[D].Jiaozuo:Henan Polytechnic University,2012.
22 张江涛.大安山岩石巷道掘进爆破实验研究[D].阜新:辽宁工程技术大学,2002.
ZhangJiangtao. The Study on Explosion Experiment on Rock Tunnel Excavation in Da’anshan Mine [D]. Fuxin:Liaoning Technical University,2002.
[1] 宋恩祥,李强,张静,彭康. 蚀变带内矿体开采中人工假底的应用研究[J]. 黄金科学技术, 2019, 27(5): 722-730.
[2] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[3] 梁瑞,俞瑞利,周文海,黄小彬,王建勇,熊征宇. 空气间隔装药爆破模型在矿房回采中的应用[J]. 黄金科学技术, 2019, 27(3): 358-367.
[4] 秦世康,陈庆发,尹庭昌. 岩石与岩体冻融损伤内涵区别及研究进展[J]. 黄金科学技术, 2019, 27(3): 385-397.
[5] 刘锋,王昭坤,马凤山,王波,王剑波,董春蕾. 矿山深部卸压技术研究现状及展望[J]. 黄金科学技术, 2019, 27(3): 425-432.
[6] 王春,王成,熊祖强,程露萍,王怀彬. 动力扰动下深部出矿巷道围岩的变形特征[J]. 黄金科学技术, 2019, 27(2): 232-240.
[7] 方传峰,王晋淼,李剡兵,贾明涛. 基于PFC2D-DFN的自然崩落法数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 189-198.
[8] 吕闹,汪海波. 厚硬顶板弱化前后垮落致灾数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 257-264.
[9] 王从陆,李童. 基于Ventsim的深井线性热源对有效通风量的影响分析[J]. 黄金科学技术, 2019, 27(2): 271-277.
[10] 李响,怀震,李夕兵,张倬瑶. 基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究[J]. 黄金科学技术, 2019, 27(1): 41-51.
[11] 陈冲,李夕兵,冯帆. 诱导巷道的围岩松动破坏区数值研究[J]. 黄金科学技术, 2018, 26(6): 771-779.
[12] 刘连生,钟清亮,闫雷,钟文,梁龙华. 频繁生产爆破加载下饱水岩体累积损伤效应声波测试研究[J]. 黄金科学技术, 2018, 26(6): 750-760.
[13] 彭博. 库水位骤降耦合不同类型降雨泥岩边坡渗透稳定性数值模拟研究[J]. 黄金科学技术, 2018, 26(5): 647-655.
[14] 李光,马凤山,刘港,郭捷,郭慧高,寇永渊. 金川矿区深部巷道支护效果评价及参数优化研究[J]. 黄金科学技术, 2018, 26(5): 605-614.
[15] 胡建华,任启帆,亓中华,张纪伟. 卧虎山铁矿采场极限暴露面积回归优化模型[J]. 黄金科学技术, 2018, 26(4): 503-510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[2] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .
[3] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[4] 柳玉明, 柳楠, 张杰, 宋玉波, 宫隆吉, 王刚, 刘晓, 张海芳. 山东英格庄金矿床构造特征研究及找矿方向[J]. J4, 2010, 18(6): 26 -29 .
[5] 耿阿乔, 段建华. 青海满丈岗金矿控矿因素及找矿靶区分析[J]. J4, 2010, 18(6): 34 -37 .
[6] 王青山. 小宛南山金矿集中区控矿因素及找矿方向[J]. J4, 2008, 16(1): 28 -34 .
[7] 张志国,胡军海 ,刘涛. 大兴安岭中段旁开门金银矿地质特征及找矿标志[J]. J4, 2008, 16(1): 43 -47 .
[8] 张华全,张维昕,李洪杰. 山东胶莱盆地金矿成矿条件及找矿方向[J]. J4, 2008, 16(2): 12 -17 .
[9] 刘涛,闫永生. 黑龙江砂宝斯矿田三十二站金矿地质特征及区域成矿条件分析[J]. J4, 2008, 16(2): 33 -36 .
[10] 叶跃威. 重量法测定氰化亚金钾中的金[J]. J4, 2008, 16(2): 60 -61 .