黄金科学技术 ›› 2019, Vol. 27 ›› Issue (4): 581-588.doi: 10.11872/j.issn.1005-2518.2019.04.581
Wenfeng XIAO(),Jianhong CHEN(
),Yi CHEN,Ximei WANG
摘要:
随着充填法在地下矿山开采中的应用越来越广,在满足充填体强度要求的情况下,寻找生产成本最低的充填料浆配比对于矿山生产经营十分重要。基于人工神经网络和遗传算法提出了一种新的充填料浆配比优化方法。首先,以水泥质量分数、粉煤灰质量分数和尾砂质量分数3个充填料浆配比参数为优化参数,以充填体强度为优化目标,建立了3-9-1的BP神经网络,并基于遗传算法对BP神经网络进行优化,建立起预测精度更高的GA_BP神经网络。然后,将预测精度更高的GA_BP神经网络作为适应度函数,结合成本计算函数,通过遗传算法进行多目标优化以获取最优的充填料浆配比参数。结果表明:当充填体抗压强度为1.5 MPa时的成本最低,充填料浆配比组合为水泥质量分数为8%,粉煤灰质量分数为2.3%,尾砂质量分数为66.3%,最低成本为29.3元/t,优化结果与实际情况一致。
中图分类号:
1 | 于世波, 杨小聪, 董凯程, 等. 空场嗣后充填法充填体对围岩移动控制作用时空规律研究[J]. 采矿与安全工程学报,2014,31(3): 430-434. |
YuShibo, YangXiaocong, DongKaicheng,et al. Space-time rule of the control action of filling body for the movement of surrounding rock in method of the delayed filling open stoping[J]. Journal of Mining and Safety Engineering,2014,31(3): 430-434. | |
2 | 由希, 任凤玉, 何荣兴, 等. 阶段空场嗣后充填胶结充填体抗压强度研究[J]. 采矿与安全工程学报,2017, 34(1): 163-169. |
YouXi, RenFengyu, HeRongxing,et al. Research on compressive strength of cemented filling body in subsequent filling at the stage of open stope [J]. Journal of Mining and Safety Engineering,2017, 34(1): 163-169. | |
3 | JiangH Q, FallM, CuiL. Freezing behaviour of cemented paste backfill material in column experiments[J]. Construction and Building Materials, 2017, 147:837-846. |
4 | KoohestaniB, KoubaaA, BelemT,et al.Experimental investigation of mechanical and microstructural properties of cemented paste backfill containing maple-wood filler[J].Construction and Building Materials, 2016, 121:222-228. |
5 | QiC C, FourieA, ChenQ S.Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill[J]. Construction and Building Materials, 2018, 159:473-478. |
6 | TekinYılmaz, BayramErcikdi. Predicting the uniaxial compressive strength of cemented paste backfill from ultrasonic pulse velocity test[J].Nondestructive Testing and Evaluation, 2015, 31(3):247-266. |
7 | 吴浩, 赵国彦, 陈英. 多目标条件下矿山充填材料配比优化实验[J]. 哈尔滨工业大学学报,2017, 49(11): 101-108. |
WuHao, ZhaoGuoyan, ChenYing. Multi-objective optimization for mix proportioning of mine filling materials[J]. Journal of Harbin Institute of Technology,2017, 49(11): 101-108. | |
8 | 赵国彦, 马举, 彭康, 等. 基于响应面法的高寒矿山充填配比优化[J]. 北京科技大学学报,2013, 35(5): 559-565. |
ZhaoGuoyan, MaJu, PengKang,et al. Mix ratio optimization of alpine mine backfill based on the response surface method[J].Journal of University of Science and Technology Beijing,2013, 35(5): 559-565. | |
9 | 张钦礼, 李谢平, 杨伟. 基于BP网络的某矿山充填料浆配比优化[J]. 中南大学学报(自然科学版),2013, 44(7): 2867-2874. |
ZhangQinli, LiXieping, YangWei.Optimization of filling slurry ratio in a mine based on back-propagation neural network [J]. Journal of Central South University (Science and Technology),2013, 44(7): 2867-2874. | |
10 | ArmaghaniD, MohamadE, NarayanasamyM,et al. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition[J]. Tunnelling and Underground Space Technology, 2017, 63:29-43. |
11 | HassanW. Application of a genetic algorithm for the optimization of a location and inclination angle of a cut-off wall for anisotropic foundations under hydraulic structures[J].Geotechnical and Geological Engineering, 2019, 37(2):883-895. |
12 | SantosJ, FerreiraA, FlintschG. An adaptive hybrid genetic algorithm for pavement management[J].International Journal of Pavement Engineering,2019, 20(3):266-286. |
13 | DingS F, LiH, SuC Y,et al. Evolutionary artificial neural networks: A review[J].Artificial Intelligence Review, 2013, 39(3):251-260. |
14 | WangJ, FangJ D, ZhaoY D. Visual prediction of gas diffusion concentration based on regression analysis and BP neural network[J]. Journal of Engineering-Joe, 2019,(13):19-23. |
15 | 王振华, 龚殿尧, 李广焘, 等. 遗传算法优化神经网络的热轧带钢弯辊力预报模型[J]. 东北大学学报(自然科学版),2018, 39(12): 1717-1722. |
WangZhenhua, GongDianyao, LiGuangtao,et al. Bending force prediction model in hot strip rolling based on artificial neural network optimize by genetic algorithm[J].Journal of Northeastern University(Natural Science),2018, 39(12): 1717-1722. | |
16 | 范伟, 林瑜阳, 李钟慎. 遗传算法优化的BP神经网络压电陶瓷蠕变预测[J]. 电机与控制学报,2018, 22(7): 91-96. |
FanWei, LinYuyang, LiZhongshen. Prediction model of the creep of piezoceramic based on BP neural network optimized by genetic algorithm[J]. Electric Machines and Control,2018, 22(7): 91-96. | |
17 | 邬书良, 陈建宏, 杨珊. 基于主成分分析与BP网络的锚杆支护方案优选[J]. 工程设计学报,2012, 19(2): 150-155. |
WuShuliang, ChenJianhong, YangShan.Optimization of bolting scheme based on combination of principal component analysis and BP neural network[J]. Chinese Journal of Engineering Design,2012, 19(2): 150-155. | |
18 | DengJ, GuD, LiX,et al. Structural reliability analysis for implicit performance functions using artificial neural network[J]. Structural Safety, 2005, 27(1):25-48. |
19 | KonakA, CoitD, SmithA. Multi-objective optimization using genetic algorithms: A tutorial[J]. Reliability Engineering and System Safety, 2006, 91(9):992-1007. |
20 | SchmittL.Theory of genetic algorithms Ⅱ: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling[J]. Theoretical Computer Science, 2004, 310(1/2/3):181-231. |
21 | DingS F, ZhangY A, ChenJ R,et al. Research on using genetic algorithms to optimize Elman neural networks[J]. Neural Computing and Applications, 2013, 23(2):293-297. |
22 | LimaD C L, LimaoD O R, RoisenbergM. Optimization of neural networks through grammatical evolution and a genetic algorithm[J]. Expert Systems with Applications, 2016, 56:368-384. |
[1] | 刘志祥,刘奕然,兰明. 矿井涌水量预测的PCA-GA-ELM模型及应用[J]. 黄金科学技术, 2017, 25(1): 61-67. |
[2] | 谭期仁,王李管,钟德云. NSGA-II算法在井下多目标运输路径优化中的应用[J]. 黄金科学技术, 2016, 24(2): 95-100. |
[3] | 叶培. 一种新的量子遗传算法在阳山金矿GPS卫星信号去噪处理中的应用探讨[J]. 黄金科学技术, 2015, 23(2): 83-87. |
[4] | 贺志坚,王跃江,杨秀瑛. 红花沟金矿回采工艺特点与创新[J]. J4, 2004, 12(4): 22-26. |
[5] | 樊满华. 干式充填法采场铺垫隔离材料的选择及应用[J]. J4, 2004, 12(1): 34-38. |
[6] | 张桂暄. 干式充填采矿法存在问题与改进实践[J]. J4, 2002, 10(6): 25-30. |
|