img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (4): 497-504.doi: 10.11872/j.issn.1005-2518.2019.04.497

• 采选技术与矿山管理 • 上一篇    下一篇

基于Vague-RSM-AFSA模型的采场结构参数优化研究

赵国彦(),李振阳(),代俊成   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2018-09-03 修回日期:2019-04-02 出版日期:2019-08-31 发布日期:2019-08-19
  • 通讯作者: 李振阳 E-mail:gy.zhao@263.net;735424518@qq.com
  • 作者简介:赵国彦(1963-),男,湖南沅江人,教授,博士生导师,从事采矿与岩石力学研究工作。gy.zhao@263.net
  • 基金资助:
    国家重点研发计划项目“深部金属矿绿色开采技术集成与示范”(2018YFC0604606);中南大学研究生自主探索创新项目“海底金属矿床采动诱发断层活化规律研究及应用”(2018zzts755);应力调控方法研究”(51774321)

Optimization Research on Stope Structural Parameters Based on Vague-RSM-AFSA Model

Guoyan ZHAO(),Zhenyang LI(),Juncheng DAI   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2018-09-03 Revised:2019-04-02 Online:2019-08-31 Published:2019-08-19
  • Contact: Zhenyang LI E-mail:gy.zhao@263.net;735424518@qq.com

摘要:

为确定某银矿的最佳采场结构参数,使该矿开采方案的安全性及经济性最优,构建了Vague-RSM-AFSA模型对采场结构参数进行优化。采用中心复合试验法设计了15个采场结构参数方案,并对各方案进行了数值模拟计算,选取了采场顶板最大沉降位移、间柱最大水平位移、采切比和矿石损失率作为评价指标。基于Vague理论计算了各指标权重及中心复合试验各方案的优越度,采用响应面法(RSM)建立了中心复合试验各方案采场结构参数与优越度的响应面模型,运用人工鱼群算法(AFSA)对优越度响应面模型寻优,得到最佳采场结构参数:采场高度为20 m,采场长度为32.8 m,间柱宽度为16.1 m,方案优越度为0.2631,高于中心复合试验中的最大优越度(0.2271),寻优结果与数值模拟验证结果误差为0.0037,表明Vague-RSM-AFSA模型具有良好的寻优能力及较高的准确性。

关键词: 采场结构参数, Vague, 响应面法, 人工鱼群算法, 优越度

Abstract:

The average dip angle and thickness of a silver ore body are 70 degrees and 10 m respectively.The ore body is unstable and the surrounding rock of the hanging wall and footwall wall is relatively stable.In order to determine the optimum stope structure parameters and optimize the safety and economy of the mining scheme,a Vague-RSM-AFSA model was established to optimize the stope structural parameters.Fifteen schemes of stope structural parameters were designed based on the principle of central composite test method,and the numerical model of each scheme was established by Midas coupled FLAC3D. Stope structural parameters are related to the safety and economy of mine production.The maximum settlement displacement of stope roof,maximum horizontal displacement of pillar,mining-cutting ratio and the ore loss rate were selected as evaluation indexes based on the geological conditions,mining methods and other factors.The Vague theory can accurately express the fuzziness and uncertainty of information,the weight of each index was obtained by calculating Vague entropy of each index.Based on Vague set,the positive and negative ideal schemes within the optimum range of stope structural parameters were obtained,and the superiority of each scheme was calculated by Euclidean distance method.Response surface methodology (RSM) can accurately construct the complex non-linear response relationship between independent variables and dependent variables,response surface method (RSM) was used to establish the response surface model of stope structural parameters and superiority of various schemes in central composite test.The square R 2 of the fitting correlation coefficient of the model is 0.9766.The numerical analysis of three groups of structural parameters in the optimum range but not in the central composite test was carried out.The maximum error between the results and the response surface model is 0.0213,which shows that the established response surface model has high accuracy.Artificial fish swarm algorithms (AFSA) has a strong ability to search global extremum,and can effectively solve complex non-linear multi-objective optimization problems,the artificial fish swarm algorithm (AFSA) was used to optimize the superiority response surface model.The optimum stope structure parameters were obtained as follows: 20 m for stope height,32.8 m for stope length,16.1 m for pillar width.And the superiority is 0.2631,which is higher than the maximum superiority of 0.2271 in the central composite test,and the error between the optimization results and the numerical simulation results is 0.0037. It shows that the Vague-RSM-AFSA model has good optimization ability and high accuracy,which provides a new method for the optimization of stope structural parameters.

Key words: stope structure parameters, Vague, response surface method, artificial fish swarm algorithm, superiority degree

中图分类号: 

  • TD353

图1

模型计算流程图"

图2

岩石力学试验"

表1

岩体物理力学参数"

岩石类型 密度/(kg ? m-3 内聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 抗压强度/MPa 弹性模量/GPa 泊松比
花岗岩 2711 6.05 22.03 3.69 53.76 7.03 0.16
板岩 2749 3.38 39.20 9.11 63.01 11.56 0.21
矿体 2926 1.52 35.33 2.54 32.49 9.71 0.21

表2

中心复合试验因素水平"

水平 因素
X 1/m X 2/m X 3/m
1 20 25 10
2 25 30 15
3 30 35 20

表3

中心复合试验设计"

方案 X 1/m X 2/m X 3/m
1 20 25 10
2 20 25 20
3 20 30 15
4 20 35 10
5 20 35 20
6 25 25 15
7 25 30 10
8 25 30 15
9 25 30 20
10 25 35 15
11 30 25 10
12 30 25 20
13 30 30 15
14 30 35 10
15 30 35 20

图3

数值模型"

表4

各方案数值模拟结果"

方案 Y 1/mm Y 2/mm Y 3/( × 10-3 m ? t-1 Y 4/%
1 19.68 7.13 11.33 28.57
2 18.82 5.02 11.33 44.44
3 20.11 5.73 9.44 33.33
4 21.67 8.02 8.10 22.22
5 20.98 5.21 8.10 36.36
6 19.42 5.56 10.67 37.50
7 20.94 7.87 8.89 25.00
8 20.57 5.80 8.89 33.33
9 20.17 5.31 8.89 40.00
10 21.50 5.92 7.62 30.00
11 20.15 7.32 10.22 28.57
12 19.52 5.05 10.22 44.44
13 20.74 5.88 8.52 33.33
14 22.47 8.35 7.30 22.22
15 21.89 6.57 7.30 36.36

图4

各方案优越度"

表5

验证方案参数及结果"

方案 X 1/m X 2/m X 3/m Y 1/mm Y 2/mm Y 3/( × 10-3 m ? t-1 Y 4/% 优越度y 模型结果 误差
16 20 30 20 19.81 5.18 9.44 40.00 0.1433 0.1646 0.0213
17 25 25 20 19.26 5.25 10.67 44.44 -0.0019 0.0053 0.0072
18 30 30 20 20.84 5.46 8.52 40.00 0.0765 0.0885 0.0120

图5

数值计算优越度与RSM预测优越度"

图6

最佳采场结构参数移动轨迹"

图7

优越度变化过程及结果"

表6

方案3和方案19数值模拟结果对比"

方案 Y 1/mm Y 2/mm Y 3/( × 10-3 m ? t-1 Y 4/% 优越度
3 20.11 5.73 9.44 33.33 0.2271
19 20.49 5.82 8.64 32.92 0.2594
1 龙科明,王李管 .基于ANSYS-R 法的采场结构参数优化[J].黄金科学技术,2015,23(6):81-86.
Long Keming , Wang Liguan . Optimization of stope structural parameters based on ANSYS-R method[J].Gold Science and Technology,2015,23(6):81-86.
2 Zhu P K , Zhao J Q .Optimization research of stope structural parameters in upward drift cut-and-backfilling mining method[J].Advanced Materials Research,2014,1010-1012: 1454-1460.
3 Wu A X , Huang M Q , Han B ,et al . Orthogonal design and numerical simulation of room and pillar configurations in fractured stopes[J].Journal of Central South University,2014,21(8):3338-3344.
4 Liu Z X , Luo T , Li X ,et al .Construction of reasonable pillar group for undersea mining in metal mine[J]. Transactions of Nonferrous Metals Society of China,2018,28(4):757-765.
5 Bai X , Marcotte D , Simon R .Underground stope optimization with network flow method[J].Computers and Geosciencs,2013,52(1): 361-371.
6 邓红卫,胡普仑,周科平,等 .采场结构参数敏感性正交数值模拟试验研究[J].中南大学学报(自然科学版),2013,44(6):2463-2469.
Deng Hongwei , Hu Pulun , Zhou Keping ,et al .Test of orthogonal numerical simulation on sensitivity of stope structure parameters[J].Journal of Central South University(Science and Technology),2013,44(6):2463-2469.
7 胡建华,任启帆,黄仁东,等 . 地下矿山采场结构参数的核主成分分析法优化[J]. 矿冶工程,2018,38(2):25-29,33.
Hu Jianhua , Ren Qifan , Huang Rendong ,et al .Optimization of structural parameters of stope in underground mine with kernel principal component analysis[J].Mining and Metallurgical Engineering,2018,38(2):25-29,33.
8 康虔,张钦礼,张楚旋,等 .理想点法在采场结构参数优化中的应用[J]. 黄金科学技术,2018,26(1):25-30.
Kang Qian , Zhang Qinli , Zhang Chuxuan ,et al . Application of ideal point method in mining stope structural parameters optimization[J]. Gold Science and Technology,2018,26(1):25-30.
9 孙杨,罗黎明,邓红卫 .金属矿山深部采场稳定性分析与结构参数优化[J].黄金科学技术,2017,25(1):99-105.
Sun Yang , Luo Liming , Deng Hongwei .Stability analysis and parameter optimization of stope in deep metal mines[J].Gold Science and Technology,2017,25(1):99-105.
10 Zhu S Y , Jian Z Q , Hou H L ,et al .Analytical model and application of stress distribution on mining coal floor[J].Journal of China University of Mining and Technology,2008,18(1):13-17.
11 罗周全,汪伟,谢承煜,等 .倾斜中厚矿体采场宽度优化[J].中南大学学报(自然科学版),2015,46(10):3865-3871.
Luo Zhouquan , Wang Wei , Xie Chengyu ,et al .Optimization of stope width of inclined medium thick ore body[J].Journal of Central South University (Science and Technology),2015,46(10): 3865-3871.
12 牛勇,李克钢 .房柱采矿法采场结构参数优化理论研究及应用[J]. 黄金科学技术,2015,23(6):75-80.
Niu Yong , Li Kegang . Study on the theory of room and pillar mining method optimization of stope structure parameters and its application[J]. Gold Science and Technology,2015,23(6):75-80.
13 李晓磊 .一种新型的智能优化方法——人工鱼群算法[D].杭州:浙江大学,2003.
Li Xiaolei . A New Intelligent Optimization Method:Artificial Fish School Algorithm[D].Hangzhou:Zhejiang University,2003.
14 Bucher C G , Bourgund U .A fast and efficient response surface approach for structural reliability problems[J].Structural Safety,1990,7(1):57-66.
15 王万军 .基于Vague 集相似度量的一种联系数方法[J].计算机工程与应用,2012,48(1):132-134.
Wang Wanjun . Connection numbers method of similarity measure based on Vague sets[J].Computer Engineering and Applications,2012,48(1):132-134.
16 王鸿绪 .单值数据转化Vague值数据的定义和转化公式[J].计算机工程与应用,2010,46(24):42-44.
Wang Hongxu .Definition and transforming formulas from single valued data to Vague valued data[J].Computer Engineering and Applications,2010,46(24):42-44.
17 Yu W Z , Tang D S . Application of TOPSIS model based on Vague set entropy in the evaluation of groundwater quality[J].Advanced Materials Research,2013,712-715:452-456.
18 王海霞 .基于Vague 集的模糊多属性决策方法的研究及应用[D].杭州:浙江理工大学,2011.
Wang Haixia .Fuzzy Multi-atrribute Decision Making Based on Vague Sets [D].Hangzhou:Zhejiang Sci-Tech University,2011.
19 Wong F S .Slope reliability and response surface method[J].Journal of Geotechnical Engineering,1985,111(1):32-53.
20 王联国,洪毅,赵付青,等 .一种简化的人工鱼群算法[J].小型微型计算机系统,2009,30(8):1663-1667.
Wang Lianguo , Hong Yi , Zhao Fuqing ,et al .Simplified artificial fish swarm algorithm[J].Journal of Chinese Computer Systems,2009,30(8):1663-1667.
[1] 万串串,陈国良,周高明,于世波,解联库,唐细卓. 基于不同岩体稳固级别的地下采场结构参数优化[J]. 黄金科学技术, 2018, 26(6): 761-770.
[2] 盛建龙, 翟明洋. 基于随机响应面法的金鸡岭岩质边坡可靠度分析及抽样方法对比[J]. 黄金科学技术, 2018, 26(3): 297-304.
[3] 牛勇,李克钢. 房柱采矿法采场结构参数优化理论研究及应用[J]. 黄金科学技术, 2015, 23(6): 75-80.
[4] 万孝衡,王新民,朱阳亚,姜志良,陈秋松. 基于组合赋权TOPSIS法的采场结构参数优选[J]. 黄金科学技术, 2014, 22(5): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[4] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[5] 喻光明, 白万成, 郭俊华. 基于矿床定位预测系统DPIS平台的成矿预测应用——以阳山金矿富集区为例[J]. J4, 2010, 18(4): 33 -36 .
[6] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .
[7] 李洪杰, 戚静洁, 马树江. 胶西北地区金矿床构造控矿规律[J]. J4, 2010, 18(4): 41 -46 .
[8] 原冬成, 徐小凤. 山东曹家埠金矿床的成矿机理与找矿前景[J]. J4, 2010, 18(4): 47 -49 .
[9] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1 -7 .
[10] 刘东海, 刘新会. 西秦岭寨上特大型金矿床黄铁矿特征及其含金性研究[J]. J4, 2010, 18(6): 8 -12 .