img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (2): 265-270.doi: 10.11872/j.issn.1005-2518.2019.02.265

• 采选技术与矿山管理 • 上一篇    下一篇

尾砂浆干扰絮凝沉降机理研究

李宗楠1,2(),郭利杰1,2(),魏晓明1,2,陈鑫政1,2   

  1. 1. 北京矿冶科技集团有限公司,北京 100160
    2. 国家金属矿绿色开采国际联合研究中心,北京 100260
  • 收稿日期:2018-05-22 修回日期:2018-09-12 出版日期:2019-04-30 发布日期:2019-04-30
  • 通讯作者: 郭利杰 E-mail:lizongnanbgrimm@163.com;ljguo264@126.com
  • 作者简介:李宗楠(1985-),男,贵州六盘水人,工程师,从事矿山充填技术领域的研究工作。lizongnanbgrimm@163.com|郭利杰(1980-),男,河南南乐人,教授,从事矿山充填技术与矿冶固废资源化利用方面的研究工作。ljguo264@126.com
  • 基金资助:
    国家重点研发计划项目“深部金属矿协同开采理论与技术”(编号:2016YFC0600709)、国家重点研发计划项目“深部金属矿高效协同膏体充填技术”(编号:2017YFC0602903)和国家自然科学基金项目“采场充填体的三维应力解析及其强度设计理论”(编号:51774040)

Research on Flocculation and Settlement Mechanism of Tailings Slurry Disturbed

Zongnan LI1,2(),Lijie GUO1,2(),Xiaoming WEI1,2,Xinzheng CHEN1,2   

  1. 1. Beijing General Research Institute of Mining and Metallurgy Technology Group,Beijing 100160,China
    2. National Center for International Joint Research on Green Metal Mining,Beijing 100260,China
  • Received:2018-05-22 Revised:2018-09-12 Online:2019-04-30 Published:2019-04-30
  • Contact: Lijie GUO E-mail:lizongnanbgrimm@163.com;ljguo264@126.com

摘要:

低浓度尾砂浆高效沉降浓缩制备高浓度料浆是实现高质量充填的关键部分,在细尾砂砂浆中添加高分子絮凝剂可有效加速细尾砂浆的沉降过程,减少溢流跑浑,但添加絮凝剂往往导致较低的底流浓度,因而,难以满足尾砂浆制备要求。现有试验和研究结果表明:对絮凝沉降过程进行适当的干扰,可有效提高沉降速率,加快沉降并获得相对较高的底流浓度,针对这一情况,开展了动态絮凝沉降对比试验,研究扰动过程对絮凝沉降影响的内在机理,结果表明:在扰动耙架的影响下,絮凝沉降速率和沉降底流浓度可大幅增加,其中沉降速率增幅为24%,底流浓度增幅约为10%。针对这一试验结果进行了机理分析,认为引起絮凝沉降速率和底流浓度增加的原因可归结为干扰过程的3种效应,即“重塑作用”、“逸散作用”和“疏导作用”,并深入分析了3种效应的作用过程。

关键词: 尾砂浆, 干扰絮凝沉降, 超孔隙水压力, 絮团, 底流浓度, 絮凝沉降机理

Abstract:

It is necessary for underground backfill to concentrate the tailing slurry at a higher level.Polyacrylamide which can effectively accelerate tailings sentiment and reduce the overflow sands,is an ordinary additive material in this process.However,flocculants-sedimentation always results in lower underflow density which is unreliable and is useless for backfilling.Still,research has shown that proper settling disturbance is beneficial to increase the density of settling underflow,such as deep cone thickener.The interaction between disturbance rake and flocs in a cone thickener is very complex.However,the core idea is that the disturbance process which destroys the water consolidation process of flocs.Research results at home and abroad has shown that the result of flow density by dynamic settling is much higher than that by natural flocculation settling.In this research direction,many scholars have gained some valuable experience,such as using computational fluid dynamics (CTD) to analyze the adsorption process of flocculants and analyze the shear effect to the activity of flocculants.Also,some used dynamic flocculation settling and rheological parameters to analyze the pressure rake of deep cone thickener,such as analysis about pressure rake in flocculation settling.The research process and conclusions are very helpful,but the dynamic effect of disturbed rake in flocculation settling process and its causation of concentration need to be further studied.In order to find out the internal mechanism of the dynamic settlement,some comparative experiments were carried out in this paper.It is shown that,a low frequency disturbance by the disturbed rake,the settling rate is significantly improved,with an increase rate of 24%,and the underflow density were greatly increase which up to 10% comparing to corresponding values in the static flocculants-settlement.Through the analysis,the reason of this results mostly attribute to three factors,that are reshaping-effect,scattering-effect and channel-effect.Reshaping-effect is that the disturbed rake continuously changes the spatial geometry shape of flocs in the settling process,promotes the wrapped water outflowing therefore increasing the settling rate.Scattering-effect is that the disturbed rake forms a velocity field in the settling space,which changes the settling path of flocs,promotes the reshaping-effect and discharge the micro-excess pore water in the flocs,thus affecting the settling rate.Channel-effect is that the small displacement of the rake makes it form a water micro passage behind the rake rotation path,which making excess pore water flow out,reducing the porosity in the Compaction Zone and increasing the underflow concentration.In this paper,the microscopic analysis of disturbing flocculation settling is focused on and three factors are analyzed and formed for reference.

Key words: tailings, disturbed flocculants-sedimentation, excess pore water pressure, flocs, underflow density, flocculation and settlement mechanism

中图分类号: 

  • TD853

图1

干扰絮凝沉降测试装置"

表1

沉降试验测试结果"

序号料浆质量浓度/%APM/(g·t-1)对照组测试组
沉降速率/(cm·min-1)底流浓度/%固体通量/(t·hr-1·m-2)沉降速率/(cm·min-1)底流浓度/%固体通量/(t·hr-1·m-2)
1101031.5758.102.0339.0064.102.51
2101537.9857.802.4545.5663.802.93
3121034.9159.302.7442.5565.503.34
4121535.0058.102.7545.7364.403.59

图2

絮凝沉降前(a)和沉降后(b)砂浆中颗粒形态"

图3

逸散作用原理图"

图4

扰动架的疏导作用与导水通道"

1 黄玉诚.矿山充填理论与技术[M].北京:冶金工业出版社,2014:12-22.
HuangYucheng.Mine Filling Theory and Technology[M].Beijing:Metallurgical Industry Press,2014:12-22.
2 OwenA T,FawellP D,SwiftJ D,et al.The impact of polyacrylamide flocculant solution age on flocculation performance[J].International Journal of Mineral Processing,2002,67(1/2/3/4):123-144.
3 OwenA T,NguyenT V,FawellP D.The effect of flocculant solution transport and addition conditions on feedwell performance in gravity thickeners[J].International Journal of Mineral Processing,2009,93(2):115-127.
4 PatienceM,Addai-MenashJ,RalstonJ.Investigation of the effect of polymer structure type on flocculation,rheology and dewatering behaviour of kaolinite dispersions[J].International Journal of Mineral Processing,2003,71(1/2/3/4):247-268.
5 WangX M,ZhaoB,ZhangQ L,et al.Cemented backfilling technology with unclassified tailings based on vertical sand silo[J].Journal of Central South University of Technology,2008,15(6):801-807.
6 张钦礼,陈秋松,王新民,等.全尾砂絮凝沉降参数GA-SVM优化预测模型研究[J].中国安全生产科学技术,2014,10(5):24-30.
ZhangQinli,ChenQiusong,WangXinmin,et al.Study on GA-SVM optimal prediction model on flocculating sedimentation parameter of unclassified tailings[J].Journal of Safety Science and Technology,2014,10(5):24-30.
7 李辉,王洪江,吴爱祥,等.基于尾砂沉降与流变特性的深锥浓密机压耙分析[J].北京科技大学学报,2013,35(12):1553-1558.
LiHui,WangHongjiang,WuAixiang,et al.Pressure rake analysis of deep cone thickeners based on tailings’ settlement and rheological characteristics[J].Journal of University of Science and Technology Beijing,2013,35(12):1553-1558.
8 史秀志,胡海燕,杜向红,等.立式砂仓尾砂浆液絮凝沉降试验研究[J].矿冶工程,2010,30(3):1-3,11.
ShiXiuzhi,HuHaiyan,DuXianghong,et al.Experimental study on flocculating sedimentation of tailings slurry in a vertical sand tank[J].Mining and Metallurgical Engineering,2010,30(3):1-3,11.
9 卞继伟,王新民,肖崇春.全尾砂动态絮凝沉降试验研究[J].中南大学学报(自然科学版),2017,48(12):3278-3283.
BianJiwei,WangXinmin,XiaoChongchun.Experimental study on dynamic flocculating sedimentation of unclassified tailings[J].Journal of Central South University (Science and Technology),2017,48(12):3278-3283.
10 李宗楠,郭利杰,余斌,等.基于宾汉姆体的高浓度尾砂浆剪切变稀规律研究[J].黄金科学技术,2017,25(4):33-38.
LiZongnan,GuoLijie,YuBin,et al.Shearing thinning behavior of high concentration slurry based on Bingham model[J].Gold Science and Technology,2017,25(4):33-38.
11 李宗楠,郭利杰,许文远,等.极细粒级尾砂絮凝沉降规律试验研究[J].中国矿业,2014,23(增2):215-218.
LiZongnan,GuoLijie,XuWenyuan.et al.Experimental study on flocculation sedimentation of fine tailings[J].China Mining Magazine,2014,23(Supp.2):215-218.
12 焦华喆,王洪江,吴爱祥,等.全尾砂絮凝沉降规律及其机理[J].北京科技大学学报,2010,32(6):702-707.
JiaoHuazhe,WangHongjiang,WuAixiang,et al.Rule and mechanism of flocculation sedimentation of unclassified tailings[J].Journal of University of Science and Technology Beijing,2010,32(6):702-707.
13 高维鸿,王洪江,陈辉,等.尾矿动态浓密过程中底流浓度主要影响因素研究[J].金属矿山,2016,45(11):102-105.
GaoWeihong,WangHongjiang,ChenHui,et al.Study on main factors of underflow concentration in the dynamics thickening process of tailings[J].Metal Mine,2016,45(11):102-105.
14 陈鑫政,郭利杰,李文臣,等. 全尾砂沉降浓缩试验研究[J]. 黄金科学技术, 2019, 27(1): 105-111.
ChenXinzheng,GuoLijie,LiWenchen,et al.Experimental study on sedimentation and concentration of unclassified tailings[J].Gold Science and Technology,2019, 27(1): 105-111.
15 LiW C,FallM.Sulphate effect on the early age strength and self-desiccation of cemented paste backfill[J].Construction and Building Materials,2016,106:296-304.
16 BassoulletP,Le HirP.In situ measurements of surficial mud strength:A new vane tester suitable for soft intertidal muds[J].Continental Shelf Research,2007,27(8):1200-1205.
17 张钦礼,周登辉,王新民,等.超细全尾砂絮凝沉降实验研究[J].广西大学学报(自然科学版),2013,38(2):451-455.
ZhangQinli,ZhouDenghui,WangXinmin,et al.Experimental study on flocculating sedimentation of ultra-fine unclassified tailings[J].Journal of Guangxi University(Natural Science Edition),2013,38(2):451-455.
18 吴爱祥,焦华喆,王洪江,等.深锥浓密机搅拌刮泥耙扭矩力学模型[J].中南大学学报(自然科学版),2012,43(4):1469-1474.
WuAixiang,JiaoHuazhe,WangHongjiang,et al.Mechanical model of scraper rake torque in deep-cone thickener[J].Journal of Central South University(Science and Technology),2012,43(4):1469-1474.
19 刘晓辉,吴爱祥,王洪江,等.膏体充填尾矿浓密规律初探[J].金属矿山,2009,39(9):38-41.
LiuXiaohui,WuAixiang,WangHongjiang,et al.A primary discussion on the thickening law of paste-filling[J].Metal Mine,2009,39(9):38-41.
20 陈辉,王洪江,吴爱祥,等.哈尔滨某矿深锥浓密机的应用改造[J].金属矿山,2015,44(5):158-161.
ChenHui,WangHongjiang,WuAixiang,et al.Application and revamping of deep cone thickener on a mine in Harbin[J].Metal Mine,2015,44(5):158-161.
[1] 李兆宇,孙伟,张盛友,李金鑫. 全尾砂物理特性对絮凝沉降性能影响规律的研究[J]. 黄金科学技术, 2022, 30(1): 64-71.
[2] 刘奇,岑佑华,刘东锐,罗卫兵,徐喜. 基于静态沉降试验的全尾砂浓密技术参数预测[J]. 黄金科学技术, 2021, 29(2): 266-274.
[3] 康虔,王运敏,贺严,薛希龙,张楚旋. 固液两相耦合条件下全尾砂连续沉降规律研究[J]. 黄金科学技术, 2019, 27(6): 896-902.
[4] 陈鑫政,郭利杰,李文臣,李宗楠. 全尾砂沉降浓缩试验研究[J]. 黄金科学技术, 2019, 27(1): 105-111.
[5] 李宗楠,郭利杰*,余斌,史采星 . 基于宾汉姆体的高浓度尾砂浆剪切变稀规律研究[J]. 黄金科学技术, 2017, 25(4): 33-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!