img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (2): 241-248.doi: 10.11872/j.issn.1005-2518.2019.02.241

• 采选技术与矿山管理 • 上一篇    下一篇

不同地应力下爆破振动效应分析

李萧翰(),刘科伟(),杨家彩,李旭东   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2018-02-04 修回日期:2018-04-04 出版日期:2019-04-30 发布日期:2019-04-30
  • 通讯作者: 刘科伟 E-mail:lixiaohan@csu.edu.cn;kewei_liu@126.com
  • 作者简介:李萧翰(1993-),男,山东济宁人,硕士研究生,从事矿山开采及爆破方面的研究工作。lixiaohan@csu.edu.cn|刘科伟(1982-),男,河北承德人,副教授,从事矿山、岩土工程灾害预测、稳定性及可靠性分析方面的研究工作。kewei_liu@126.com
  • 基金资助:
    中南大学中央高校基本科研业务费专项资金“基于LS-DYNA的岩体爆破损伤研究”(编号:2017zzts789)、“不同埋深条件下地应力对巷道爆破开挖影响的数值模拟研究”(编号:2017zzts802)和湖南省自然科学基金项目“爆炸荷载下应力波空间变化特性与结构响应机理研究”(编号:2018JJ3656)

Analysis of Blasting Vibration Effects Under Different Ground Stress

Xiaohan LI(),Kewei LIU(),Jiacai YANG,Xudong LI   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2018-02-04 Revised:2018-04-04 Online:2019-04-30 Published:2019-04-30
  • Contact: Kewei LIU E-mail:lixiaohan@csu.edu.cn;kewei_liu@126.com

摘要:

为研究岩石在不同地应力下的爆破振动效应,选择经验证过的岩石本构,利用ANSYS/LS-DYNA隐式—显式序列求解方法,对不同侧压力系数下岩石爆破过程进行数值分析。分别构建了侧压力系数为0.1、0.5、1.0、2.0、4.0条件下的计算模型,数值模拟结果表明:初始地应力对爆破有较强的抑制作用,岩石破碎区受侧压力系数的影响较小,爆破裂纹优先向较大的地应力方向延伸;岩石质点振动速度峰值(PPV)到达时间不受侧压力系数的影响;当侧压力系数小于1.0时,水平方向的质点振动速度峰值大于竖直方向;当侧压力系数大于1.0时,竖直方向的质点振动速度峰值大于水平方向。

关键词: 爆破振动, ANSYS/LS-DYNA, 地应力, 侧压力系数, 爆破裂纹, 质点峰值振动速度

Abstract:

As the depth of mining, tunnel excavation, etc. continues to increase, high ground stresses appear in the interior of the rock mass. High ground stress will have a great impact on the blasting effect of rock mass. In order to study the blasting vibration effects on rock mass under different ground stresses, the finite element software ANSYS/LS-DYNA is applied to simulate the propagation of stress wave in rock mass under high ground stress.The influence of blasting on the surrounding rock mass under different ground stresses is analyzed, and the effects of different ground stresses on the blasting effect is finally obtained.A constitutive model of rock mass is selected and calibrated.Then applying implicit-explicit method, the dynamic explicit software ANSYS/LS-DYNA is used to model the blasting process of rock mass under different lateral pressure coefficients. Numerical models are built under condition that lateral pressure coefficients are 0.1, 0.5, 1.0, 2.0 and 4.0,respectively. Numerical simulation results indicate that high ground stress inhibits the blasting effects of rock mass and resists the damage extension around the blast hole. The lateral pressure coefficient has less influence on the fracture zone of rock mass, but has a greater influence on the crack zone of rock mass. And cracks will extend to the direction of higher ground stress more easily. Before the peak vibration velocity reaches its peak point, the rising time of peak particle velocity (PPV) is not influenced by lateral pressure coefficients. PPV in horizontal direction is greater than that of vertical direction when the lateral pressure coefficient is less than 1.0, while PPV in vertical direction is greater than that of horizontal direction when the lateral pressure coefficient is more than 1.0. This research can not only be used to evaluate the stability of deep rock mass structure under blasting load, but also can correctly guide blasting operation in engineering practice. More importantly, applying numerical simulation to analyze rock mass damage under blasting load can provide a reference experience for the in-depth study of the damage mechanism of rock mass under high strain rate dynamic loads.

Key words: blasting vibration, ANSYS/LS-DYNA, ground stress, lateral pressure coefficient, blasting crack, peak particle velocity

中图分类号: 

  • TD853

表1

岩石物理力学参数"

岩石参数数值岩石参数数值
抗压强度/MPa21弹性模量/GPa13.1
抗拉强度/MPa1.8泊松比0.25
密度/(kg·m-32 009

表2

岩石乳化炸药参数"

炸药参数数值炸药参数数值
密度/(kg·m-31 100R14.2
爆速/(m·s-13 600R20.9
A/GPa214.4ω0.15
B/GPa0.182E0/GPa4.192

图1

实验及数值模拟结果对比"

图2

几何模型示意图"

图3

不同侧压力系数下岩石破坏区分布"

图4

监测点位置分布"

图5

不同位置处质点振动速度时程曲线"

图6

不同侧压力系数水平方向与竖直方向的质点峰值振动速度对比"

1 YuL,SuH,JingH,et al.Experimental study of the mechanical behavior of sandstone affected by blasting[J].International Journal of Rock Mechanics and Mining Sciences,2017,93:234-241.
2 RoyM P,SinghP K,SarimM,et al.Blast design and vibration control at an underground metal mine for the safety of surface structures[J].International Journal of Rock Mechanics and Mining Sciences,2016,83:107-115.
3 AhsanN,SchedingS,MonteiroS T,et al.Adaptive sampling applied to blast-hole drilling in surface mining[J].International Journal of Rock Mechanics and Mining Sciences,2015,75:244-255.
4 LeeJ S,AhnS K,SagongM.Attenuation of blast vibration in tunneling using a pre-cut discontinuity[J].Tunnelling and Underground Space Technology,2016,52:30-37.
5 YangP,XiangJ,ChenM,et al.The immersed-body gas-solid interaction model for blast analysis in fractured solid media[J].International Journal of Rock Mechanics and Mining Sciences,2017,91:119-132.
6 YiC P,JohanssonD,GrebergJ.Effects of in-situ stresses on the fracturing of rock by blasting[J].Computers and Geotechnics,2018, 104:321-330.
7 胡建华,杨春,周炳任,等.巷道压顶光面爆破裂隙扩展模拟及参数优化[J].黄金科学技术,2017,25(2):45-53.
HuJianhua,YangChun,ZhouBingren,et al.Simulation of fracture propagation and optimization of parameters for smooth blasting of coping in roadway[J].Gold Science and Technology,2017,25(2):45-53.
8 过江,崔文强,陈辉.不同耦合介质光面爆破裂纹发展数值分析[J].黄金科学技术,2016,24(1):68-75.
GuoJiang,CuiWenqiang,ChenHui.Numerical analysis of the smooth blasting crack development under different coupling medium[J].Gold Science and Technology,2016,24(1):68-75.
9 Van GoolB V.Effects of Blasting on the Stability of Paste Fill Stopes at Cannington Mine[D].Townsville:James Cook University,2007.
10 刘优平,龚敏,赵江倩,等.近充填体崩矿过程爆破振动控制研究[J].矿冶工程,2011,31(5):13-17.
LiuYouping,GongMin,ZhaoJiangqian,et al.Study on blasting vibration control during mining near the fill-mass[J].Mining and Metallurgical Engineering,2011,31(5):13-17.
11 唐明渊,周建敏,余红兵,等.爆破振动对不同埋深采空区稳定性影响研究[J].爆破,2017,34(3):140-144.
TangMingyuan,ZhouJianmin,YuHongbing,et al.Influenced of blasting vibration on stability analysis of different depths of mined-out areas[J].Blasting,2017,34(3):140-144.
12 胡建华,雷涛,周科平,等.充填采矿环境下爆破振动效应预测与控制[J].爆破,2009,26(4):81-84.
HuJianhua,LeiTao,ZhouKeping,et al.Forecast and control of blasting vibration effects under fill mining condition[J].Blasting,2009,26(4):81-84.
13 LuW B,ChenM,GengX,et al.A study of excavation sequence and contour blasting method for underground powerhouses of hydropower stations[J].Tunnelling and Underground Space Technology,2012,29:31-39.
14 MaG W,AnX M.Numerical simulation of blasting-induced rock fractures[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(6):966-975.
15 YilmazO,UnluT.Three dimensional numerical rock damage analysis under blasting load[J].Tunnelling and Underground Space Technology,2013,38(9):266-278.
16 LSTC.LS-DYNA User Manual Version Non Dynamic of Structure in Three Dimension[M].California:Livermore Software Technology Corporation(LSTC),2003.
17 JohnH O.LS-DYNA theoretical manual-version 970[R].Califorila:Livermore Software Technology Corporation,2005.
18 杨军,金乾坤,黄风雷,等.岩石爆破理论模型及数值计算[M].北京:科学出版社,1999.
YangJun,JinQiankun,HuangFenglei,et al.Theoretical Model and Numerical Simulation of Rock Blasting[M].Beijing:Science Press,1999.
19 石少卿,康建功,汪敏,等.ANSYS/LS-DYNA在爆炸与冲击领域内的工程应用[M].北京:中国建筑工业出版社,2011:20-31.
ShiShaoqing,KangJiangong,WangMin,et al.Application of ANSYS/LS-DYNA in Blasting and Impacting[M].Beijing:China Architecture and Building Press,2011:20-31.
20 HallquistJ O.Theoretical manual for dyna3D university of California[R].Califorila:Lawrence Livermore National Laboratory,1982.
21 OnederraI A,FurtneyJ K,SellersE,et al.Modelling blast induced damage from a fully coupled explosive charge[J].International Journal of Rock Mechanics and Mining Sciences,2013,58:73-84.
22 ZhaoJ J,ZhangY,RanjithP G.Numerical simulation of blasting-induced fracture expansion in coal masses[J].International Journal of Rock Mechanics and Mining Sciences,2017,100:28-39.
23 唐海,李海波,周青春,等.预裂爆破震动效应试验研究[J].岩石力学与工程学报,2010,29(11):2277-2284.
TangHai,LiHaibo,ZhouQingchun,et al.Experimental study of vibration effect of presplit blasting[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(11):2277-2284.
[1] 李振阳, 张宝岗, 熊信, 杨承业, 白玉奇. 基于PSO-XGBoost的露天矿山PPV预测模型研究[J]. 黄金科学技术, 2024, 32(4): 620-630.
[2] 李祥龙, 余林, 黄原明, 陈浩, 赵艳伟. 基于VMD-HHT的井下预裂爆破振动效应分析[J]. 黄金科学技术, 2024, 32(3): 501-510.
[3] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[4] 代树红, 张战军, 柳凯, 郑昊, 孙清林. 基于PEMD-MPE算法的露天矿爆破振动信号降噪方法[J]. 黄金科学技术, 2024, 32(1): 82-90.
[5] 凡兴禹, 王雪林. 基于改进XGBoost算法的深部巷道松动圈智能预测研究[J]. 黄金科学技术, 2024, 32(1): 109-122.
[6] 邓红卫, 罗亮. 基于SMA算法优化随机森林的PPV预测模型[J]. 黄金科学技术, 2023, 31(4): 624-634.
[7] 吴钦正,李润然,李桂林,李金平,尹延天,徐帅. 基于JKSimBlast软件的露天矿爆破毫秒延期时间优化[J]. 黄金科学技术, 2021, 29(6): 854-862.
[8] 李光,马凤山,郭捷,邹龙,寇永渊. 金川二矿区地应力特征及其对巷道变形破坏的影响研究[J]. 黄金科学技术, 2021, 29(6): 817-825.
[9] 王玺,马春德,刘兴全,姜明伟,范玉赟. 滨海矿区地应力与岩石力学参数随埋深的变化规律及其相互关系[J]. 黄金科学技术, 2021, 29(4): 535-544.
[10] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[11] 马春德, 刘泽霖, 谢伟斌, 魏新傲, 赵新浩, 龙珊. 套孔应力解除法与声发射法在新城矿区深部地应力测量中的对比研究[J]. 黄金科学技术, 2020, 28(3): 401-410.
[12] 李光,马凤山,郭捷,赵海军,寇永渊,兰剑,赵金田. 高地应力破碎围岩巷道变形破坏特征及支护方式研究[J]. 黄金科学技术, 2020, 28(2): 238-245.
[13] 费鸿禄,刘雨,钱起飞,苏强,孙晓宇. 地应力作用下偏心装药的炮孔裂隙分布[J]. 黄金科学技术, 2020, 28(2): 228-237.
[14] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[15] 王卫华,孙腾飞,刘希涛. 基于地应力和二次损伤的预留光爆层爆破参数研究[J]. 黄金科学技术, 2019, 27(4): 565-572.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!