img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (1): 129-136.doi: 10.11872/j.issn.1005-2518.2019.01.129

• • 上一篇    下一篇

氰化尾渣选硫工艺优化研究

赵文强1,姜传进1,石宝宝2   

  1. 1. 山东金创金银冶炼有限公司,山东 烟台 265615
    2. 山东黄金金创集团有限公司大柳行金矿,山东 烟台 265615
  • 收稿日期:2018-02-20 修回日期:2018-08-17 出版日期:2019-02-28 发布日期:2019-03-19
  • 作者简介:赵文强(1983-),男,山东泰安人,工程师,从事复杂矿物预处理研究工作。zhaowenqiang1983ok@163.com

Optimization Study on the Sulfur Separation Process for Cyanide Tailing

Wenqiang ZHAO1,Chuanjin JIANG1,Baobao SHI2   

  1. 1. Shandong Jinchuang Gold and Silver Smelting Finite Company,Yantai 265615,Shandong,China
    2. Shandong Gold Jinchuang Group Daliuhang Gold Mine,Yantai 265615,Shandong,China
  • Received:2018-02-20 Revised:2018-08-17 Online:2019-02-28 Published:2019-03-19

摘要:

由于氰化物对硫铁矿有一定的抑制作用,直接采用浮选法回收氰化尾渣中硫铁矿的效果不理想。因此,必须先对氰化尾渣进行预处理,使被抑制矿物恢复浮选活性。采用添加还原剂和浓硫酸协同预处理方法使被抑制矿物恢复活性,并分别考察加药顺序、焦亚硫酸钠用量和pH值等因素对硫精矿回收率和尾矿品位的影响。浮选试验采用一粗、一精、二扫流程,考察了pH值调节剂、铵盐和复合抑制剂等对硫精矿回收率和尾矿品位的影响。最终确定预处理最佳工艺条件:先添加2 kg/t的Na2S2O5药剂预处理1 h,然后加入浓硫酸将矿浆pH值调至2~3并维持2 h,再用NaOH将pH值调至6~7。浮选最佳条件:丁胺黑药用量为500 g/t,复合抑制剂用量为300~500 g/t,通过试验取得硫精矿品位为40%~42%,尾矿中S元素品位为6%~8%的良好结果。

关键词: 硫铁矿, 预处理, 浮选工艺, 焦亚硫酸钠, 活化, 铵盐, 复合抑制剂, 氰化尾渣

Abstract:

Since cyanide has a certain inhibitory effect on pyrite,the effect of directly using flotation to recover pyrite in cyanide tailings is not satisfactory.Therefore,the inhibited mineral flotation activity must be recovered by pretreatment of the cyanide tailings.In the gold industry,the cyanide tailings S separation process uses acid addition cyanide removal method,metal ion precipitation cyanide method and addition of redox and cyanide removal agent cyanide method or a combination method to restore the inhibited pyrite.Research papers specifically for the flotation of pyrite in cyanide tailings are rarely seen in domestic industry research.There are many problems in the pretreatment and flotation,such as the mechanism is not clear,the dosage of the drug is extensive,the production cost is high,and the index is unstable.In this study,the synergistic pretreatment method of adding reducing agent and concentrated sulfuric acid was used to restore the inhibited mineral activity,and the effects of dosing order,sodium pyrosulfite dosage and pH value on the recovery rate of sulfur concentrate and tailing grade were investigated.Pretreatment tests show that:Adding sodium pyrosulfite first and then adding concentrated sulfuric acid is better than the reverse; When the sodium pyrosulfite in an amount of 2 000 g/t and pH=2~3 can achieve the best results.The flotation tests adopt the process of one roughing,one refining and two scavenging,and the effects of pH adjusters,ammonium salts and composite inhibitors on the recovery rate of sulfur concentrate and tailing grade were investigated.The flotation test found that using CaO as a pH adjuster has an inhibitory effect on the flotation activity of pyrite,and the addition of an ammonium salt can restore this activity,but there is still a problem of foam sticking.Although the use of composite inhibitors can improve the concentrate grade and reduce the impurity content of Pb and Zn in the concentrate,the Pb and Zn in the concentrate are too fine to be entrained by the foam,so the Pb and Zn grades of the S concentrate cannot be further reduced by the flotation method alone.The test finalizes the optimum process conditions for the pretreatment:The first step was added 2 000 kg/t Na2S2O5 regent for pretreatment for 1 h,concentrated sulfuric acid was then added to the slurry,and the pH value was adjusted to 2~3 and maintained 2 h,NaOH and then adjusted to pH=6~7.The optimum flotation conditions are as follows:the dosage of dibutyl dithiophosphate is 500 g/t,the dosage of composite inhibitor is 300~500 g/t, and the good results of sulfur concentrate grade of 40 % ~42 % and S element grade of tailings of 6 % ~8 % are obtained through experiments.

Key words: pyrite, pretreatment, sodium metabisulfite, activate, ammonium salt, compound agent, cyanide tailings

中图分类号: 

  • TD95

表1

尾渣主要元素含量分析"

元素 含量 元素 含量
Au* 0.5~1.0 Pb 0.18~0.32
Ag* 20~30 Zn 0.07~0.20
Fe 12~16 S 20~25

图1

开路试验流程图"

表2

方案1开路试验结果统计"

产品名称 试验编号 产品产率/% 元素含量/% 回收率/%
S Pb Zn S Pb Zn
一次粗选 F-k1 33.25 43.00 0.18 0.20 60.53 18.56 50.39
一次扫选 F-k2 6.85 42.00 0.22 0.14 12.18 4.67 7.26
二次扫选 F-k3 6.60 32.00 0.36 0.12 8.94 7.37 6.00
二扫尾矿 F-X 53.30 8.13 0.42 0.09 18.35 69.41 36.35
平衡原矿 F-N 100.00 24.00 0.32 0.13 100.00 100.00 100.00

表3

方案2开路试验结果统计"

产品名称 试验编号 产品产率/% 元素含量/% 回收率/%
S Pb Zn S Pb Zn
一次粗选 F-k1 34.50 40.28 0.20 0.15 60.73 22.30 43.44
一次扫选 F-k2 10.79 41.98 0.20 0.06 19.80 6.97 5.43
二次扫选 F-k3 7.16 29.00 0.40 0.12 9.08 9.26 7.22
二扫尾矿 F-X 47.55 5.00 0.40 0.11 10.39 61.47 43.91
平衡原矿 F-N 100.00 23.00 0.31 0.12 100.00 100.00 100.00

表4

2种方案试验结果对比分析"

编号 方案1尾矿元素含量 方案2尾矿元素含量
S Pb Zn S Pb Zn
1# 8.2 0.3 0.11 5 0.4 0.11
2# 7.6 0.32 0.09 6.4 0.36 0.09
3# 5.6 0.35 0.08 5.7 0.33 0.12
4# 8.7 0.36 0.12 5.8 0.34 0.08
5# 10.3 0.28 0.09 3.9 0.36 0.15
6# 6.9 0.3 0.15 4.5 0.31 0.09

图2

25 ℃水溶液中亚硫酸盐各组分占总含量的比率"

图3

尾矿品位与Na2S2O5用量关系"

表5

不同pH值条件下试验结果统计"

pH值 方案1尾矿元素含量
S Pb Zn
8~9 19.2 0.28 0.14
5~6 10.5 0.31 0.11
2~3 4.7 0.32 0.09
0~1 4.2 0.29 0.10

表6

采用CaO替代NaOH作为pH值调节剂的浮选试验结果"

产品名称 试验编号 产品产率/% 元素含量/% 回收率/%
S Pb Zn S Pb Zn
一次粗选 F-k1 33.18 39.95 0.18 0.12 62.62 20.78 34.77
一次扫选 F-k2 6.10 25.00 0.20 0.09 7.21 4.25 4.80
二次扫选 F-k3 5.98 22.00 0.40 0.15 6.22 8.32 7.84
二扫尾矿 F-X 54.74 9.26 0.35 0.11 23.95 66.65 52.59
平衡原矿 F-N 100.00 21.00 0.29 0.11 100.00 100.00 100.00

表7

采用CaO+(NH4)2SO4(300 g/t)替代NaOH作为pH调节剂试验"

产品名称 试验编号 产品产率/% 元素含量/% 回收率/%
S Pb Zn S Pb Zn
一次粗选 F-k1 35.40 38.57 0.33 0.24 66.39 39.98 56.56
一次扫选 F-k2 10.20 25.28 0.20 0.18 12.54 6.98 12.23
二次扫选 F-k3 6.72 23.02 0.39 0.13 7.52 8.97 5.82
二扫尾矿 F-X 47.69 5.84 0.27 0.08 13.54 44.07 25.40
平衡原矿 F-N 100.00 21.00 0.29 0.15 100.00 100.00 100.00

图4

尾矿品位随铵盐用量的变化关系"

表8

采用复合抑制剂抑制铅、锌的结果统计"

抑制剂用量/(g·t-1 一次粗选硫精矿品位 尾矿品位 一次粗选铅品位 一次粗选锌品位
0 38.55 5.84 0.33 0.24
100 39.01 5.81 0.26 0.18
300 43.66 4.63 0.18 0.12
500 45.36 5.26 0.16 0.11
1 000 43.33 6.24 0.16 0.13

图5

浮选闭路试验流程示意图"

表9

闭路试验结果统计"

产品名称 产率/% 品位/% 回收率/%
S Pb Zn S Pb Zn
硫精矿 39.50 49.26 0.12 0.24 86.46 26.06 63.70
尾矿 60.50 5.14 0.22 0.09 13.54 73.94 36.30
原矿 100.00 23.02 0.18 0.15 100.00 100.00 100.00
1 王资 .浮游选矿技术[M].北京:冶金工业出版社,2006:143-144.
Wang Zi .The Technology of Flotation[M].Beijing:Metallurgical Industry Press,2006:143-144.
2 何辉,贾学国,谢建宏,等 .氰化尾矿再选回收硫的试验研究[J].矿业研究与开发,2013,33(1):32-34.
He Hui , Jia Xueguo , Xie Jianhong ,et al .Experimental study on recovery of sulphur from a cyanidation tailings[J].Mining Research and Development,2013,33(1):32-35.
3 孙淑慧,付国燕,钱鹏,等 .氰化尾渣高效脱氰富集硫铁的试验研究[J].计算机与应用化学,2013,30(3):229-235.
Sun Shuhui , Fu Guoyan , Qian Peng ,et al .The research on the efficient destruction of cyanide and recovery of pyrite from the residue of cyanide[J].Computers and Applied Chemistry,2013,30(3):229-235.
4 丘学民,陈国宝,张勤,等 .从超细粒高铅锌氰化尾渣中浮选回收有价金属的试验研究[J].黄金科学技术,2017,25(6):61-67.
Qiu Xuemin , Chen Guobao , Zhang Qin ,et al .Experimental study on flotation recovery of valuable metals from ultrafine cyanide tailing containing high grade lead and zinc[J].Gold Science and Technology,2017,25(6):61-67.
5 李婷,尹艳芬,方夕辉,等 .从金氰化尾渣中回收铜、铅、锌、硫的工艺技术现状[J].现代矿业,2011,4(4):28-29.
Li Ting , Yin Yanfen , Fang Xihui ,et al .Technological status of recovering copper,lead,zinc,sulfur from gold cyaniding tailings[J].Modern Mining,2011,4(4):28-29.
6 李仕熊,李学强,张学政 .从氰化尾渣高效回收铜、铅、锌、硫的新工艺研究[J].湖南有色金属,2009,25(1):13-16.
Li Shixiong , Li Xueqiang , Zhang Xuezheng .Study on new techniques for effective recovery of Cu、Pb、Zn and S from cyanide residue[J].Hunan Nonferrous Metals,2009,25(1):13-16.
7 李新民,张占良,李萍,等 .氰化尾矿中铜铅硫综合回收试验研究[J].金属矿山,2002,32(增):70-72.
Li Xinmin , Zhang Zhanliang , Li Ping ,et al .Test research of the comprehensive recovery of copper,lead and sulfur from cyanidation tailings[J].Metal Mine,2002,32(Supp.):70-72.
8 霍奇金森G,郑健 .从浸金渣中浮选黄铁矿[J].国外金属矿选矿,1995(6):17-23.
Hodgkinson G , Zheng Jian .The flotation of pyrite from gold dregs[J].Metallic Ore Dressing Abroad,1995(6):17-23.
9 韩跃新,马艺闻,朱一民,等 .黄铁矿表面氰根离子的吸附规律研究[J].金属矿山,2013,42(1):70-72.
Han Yuexin , Ma Yiwen , Zhu Yimin ,et al .Research on adsorption rule of cyanide ions on the pyrite surface[J].Metal Mine,2013,42(1):70-72.
10 杨秀丽,黄雄,邱廷省 .焦亚硫酸钠在氰化尾渣中硫化铜锌矿表面的活化作用[J].中国有色金属学报,2016,26(9):1982-1989.
Yang Xiuli , Huang Xiong , Qiu Tingsheng .Activation of sodium metabisulfite on surfaces of copper-zinc sulfide ore in cyanidation tailings[J].The Chinese Journal of Nonferrous Metals,2016,26(9):1982-1989.
11 唐宇,赵博 .浅析黄铁矿的可浮性及抑制活化机理[J].城市建设理论研究,2015,5(29):20-22.
Tang Yu , Zhao Bo .The shallow analysis of the flotation of pyrite and the inhibition and activation mechanism[J].Construction,2015,5(29):20-22.
12 Murphy R , Strongin D R .Surface reactivity of pyrite and related sulfides[J].Surface Science Reports,2009,64(1):1-45.
13 Chandra A R , Gerson A R .A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals,sphalerite and pytite[J].Advances in Colloid and Interface Science,2009,145(1/2):97-100.
14 黄尔君,冯育武 .铵盐对黄铁矿的活化作用及其机理研究[J].有色金属(选矿部分),2006(2):33-37.
Huang Erjun , Feng Yuwu .The study on the activation and mechanism of ammonium salt for pyrite[J].Nonferrous Metals(Mineral Processing Section),2006(2):33-37.
15 肖骏,陈代雄,杨建文,等 .草酸对含伴生金硫化矿中贵金属活化的研究及应用[J].黄金,2015,36(5):50-54.
Xiao Jun , Chen Daixiong , Yang Jianwen ,et al .Research on the activation of precious metals in gold associated sulfide ores by oxalic acid and its application[J].Gold,2015,36(5):50-54.
16 邱沙,郭鹏智,郑其,等 .焦亚硫酸钠—空气法处理含氰尾矿浆[J].有色金属(冶炼部分),2015,16(12):59-62.
Qiu Sha , Guo Pengzhi , Zheng Qi ,et al .Treament of cyanide tailing slurry by Na2S2O5-air method[J].Nonferrous Metals(Extractive Metallurgy),2015,36(5):50-54.
17 张英,覃武林,孙伟,等 .石灰和氢氧化钠对黄铁矿浮选抑制的电化学行为[J].中国有色金属学报,2011,21(3):675-680.
Zhang Ying , Qin Wulin , Sun Wei ,et al .Electrochemical behaviors of pyrite flotation using lime and sodium hydroxide as depressantors[J].The Chinese Journal of Nonferrous Metals,2011,21(3):675-680.
18 孙伟,张英,覃武林,等 .被石灰抑制的黄铁矿的活化浮选原理[J].中南大学学报(自然科学版),2010,41(3):813-814.
Sun Wei , Zhang Ying , Qin Wulin ,et al .Activated flotation of pyrite once depressed by lime[J].Journal of Central South University(Science and Technology),2010,41(3):813-814.
19 黄有成,赵礼兵 .无机抑制剂在低碱度铅锌硫分离中的作用研究[J].现代矿业,2011,1(1):23-30.
Huang Youcheng , Zhao Libing .The effect of inorganic inhibitors on separation of lead,zinc and sulfur in low alkalinity condition[J].Mordern Mining,2011,1(1):23-30.
20 欧乐明,黄思捷,冯其明,等 .高品质硫精矿生产工艺技术研究[J].化工矿物与加工,2009,38(11):1-4.
Leming Ou , Huang Sijie , Feng Qiming ,et al .Processing technology of high quality sulfur concentrate[J].Chemical Minerals and Processing,2009,38(11):1-4.
21 衣德强 .硫精矿降杂工业试验研究[J].中国矿山工程,2005,34(6):27-30.
Yi Deqiang .Industrial test study of reducing sulfur concentrate impurities[J].China Mine Engineering,2005,34(6):27-30.
[1] 刘艳华,陈国宝,杨洪英,金哲男,王改荣. 毒砂机械活化性能及其浸出试验研究[J]. 黄金科学技术, 2018, 26(5): 669-676.
[2] 史采星, 郭利杰, 李文臣, 张丹. 铅锌冶炼渣充填胶凝材料研究及应用[J]. 黄金科学技术, 2018, 26(2): 160-169.
[3] 李佳峰, 杨洪英, 佟琳琳, 金哲男, 张登超. 抛刀岭难处理金精矿细菌氧化-提金实验研究[J]. 黄金科学技术, 2018, 26(2): 248-253.
[4] 刘子龙, 杨洪英, 张金刚, 宋言. 含砷金精矿砷富集试验研究[J]. 黄金科学技术, 2018, 26(2): 254-260.
[5] 宋学文,朱加乾,罗增鑫,陈波. 某氰渣工艺矿物学及金浮选工艺研究[J]. 黄金科学技术, 2018, 26(1): 89-97.
[6] 丘学民,陈国宝*,张勤,杨洪英. 从超细粒高铅锌氰化尾渣中浮选回收有价金属的试验研究[J]. 黄金科学技术, 2017, 25(6): 61-67.
[7] 李宗楠,郭利杰*,余斌,史采星 . 基于宾汉姆体的高浓度尾砂浆剪切变稀规律研究[J]. 黄金科学技术, 2017, 25(4): 33-38.
[8] 王浩,田庆华,辛云涛,郭学益. 含锑难处理金矿臭氧氧化预处理工艺研究[J]. 黄金科学技术, 2016, 24(4): 154-159.
[9] 王永良,吕翠翠,肖力,丁剑,付国燕,叶树峰. 氰化尾渣中抑砷富集硫铁的研究[J]. 黄金科学技术, 2016, 24(4): 144-148.
[10] 丁文涛,蔡创开,郭金溢,许晓阳. 某难处理金矿热压氧化渣预处理试验研究[J]. 黄金科学技术, 2016, 24(1): 108-112.
[11] 唐立靖,唐云*,王燕南,杨典奇. 微细浸染型金矿碱预处理—非氰化浸出研究[J]. 黄金科学技术, 2015, 23(5): 94-98.
[12] 赵汝全,鄢发明,赵捷明,吴彩斌,雷存友,杨斌. 硫酸铜在微细粒嵌布水淬铜渣浮选试验中的应用[J]. 黄金科学技术, 2015, 23(4): 46-51.
[13] 马英强,黄发兰,印万忠,洪正秀. 铜陵天马山含砷硫金精矿酸性氧化预处理试验研究[J]. 黄金科学技术, 2015, 23(3): 83-88.
[14] 唐立靖,唐云,许正波. 难选金矿微波预处理边磨边浸非氰化试验研究[J]. 黄金科学技术, 2015, 23(1): 85-89.
[15] 蔡创开. 黔西南某碳质含砷金矿提金工艺试验研究[J]. 黄金科学技术, 2014, 22(4): 124-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!