img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2018, Vol. 26 ›› Issue (3): 297-304.doi: 10.11872/j.issn.1005-2518.2018.03.297

• • 上一篇    下一篇

基于随机响应面法的金鸡岭岩质边坡可靠度分析及抽样方法对比

SHENGJianlong1,ZHAIMingyang1,*   

  1. 1武汉科技大学资源与环境工程学院,湖北 武汉 430081
  • 收稿日期:2017-09-20 修回日期:2018-01-26 出版日期:2018-06-30 发布日期:2018-07-28
  • 通讯作者: ZHAIMingyang
  • 基金资助:
    国家自然科学基金青年基金项目“压剪作用下岩体裂隙水气两相流渗透特性演化机制研究”(编号:51709207)和湖北省自然科学基金面上项目“压剪作用下岩体裂隙水气两相渗流与变形耦合机理研究”(编号:2014CKB499)联合资助

Reliability Analysis and Sampling Method Comparison of Jinjiling Rock Slope Based on Stochastic Response Surface Method

  1. 1College of Resources and Environment Engineering,Wuhan University of Science and Technology,Wuhan 430081,Hubei,China
  • Received:2017-09-20 Revised:2018-01-26 Online:2018-06-30 Published:2018-07-28

摘要:

结合有限元滑面应力法和Hermite随机响应面法建立了金鸡岭岩质边坡稳定可靠度非侵入式分析模型,在此基础上研究了均匀设计抽样、LHS抽样、改进LHS抽样和分层抽样4种抽样配点方法对随机响应面的拟合精度、边坡失效概率及安全系数统计特征的影响。结果表明:(1)金鸡岭岩质边坡未支护状态下的失效概率约为18.4%,失稳风险较大,需采取支护加固措施;(2)改进LHS抽样和LHS抽样所构造的随机响应面具有较好的拟合精度,抽样配点效果优于分层抽样和均匀设计抽样;(3)建议边坡可靠度非侵入式随机分析采用改进LHS抽样或LHS抽样进行随机响应面的抽样配点计算,并尽可能多地选取样本点以外的验算点对随机响应面拟合精度进行校验。

关键词: Hermite随机响应面法, 滑面有限元应力法, 边坡可靠度分析, 抽样配点方法, Monte-Carlo法, LHS抽样, 失效概率, 拟合精度

Abstract:

The non-invasive analysis model of Jinjiling rock slope stability is established based on the finite element sliding stress method and Hermite stochastic response surface method.The influence of four typical sampling methods like uniform sampling,LHS sampling,improved LHS sampling and stratified sampling on the random response surface’s fitting accuracy,slope failure probability and statistical characteristics of safety factor are studied.The results indicate that:(1)Jinjiling rock slope’s failure probability is about 18.4%,which is dangerous and needs proper support and reinforcement measures.(2)The random response surfaces constructed by LHS sampling and improved LHS sampling have better fitting accuracy,and the sampling allocation effect is better than that of stratified sampling and uniform design sampling.(3)It is suggested that the sampling allocation of random response surface should be calculated by improved LHS sampling or LHS sampling in the process of non-intrusive random analysis of slope reliability.

Key words: Hermite stochastic response surface method, finite element sliding stress method, reliability analysis of slope stability, sampling allocation method, Monte-Carlo method, LHS sampling, failure probability, fitting accuracy

中图分类号: 

  • TD854

图1

各抽样配点方法二维样本点分布"

图2

边坡简化几何模型"

表1

岩土物理力学参数及统计特征"

力学参数统计参数粉质粘土矽卡岩强风化岩层分布类型
粘聚力c/kPa均值μ25.060.0正态分布
变异系数COV0.250.22
内摩擦角φ/(°)均值μ23.025.0正态分布
变异系数COV0.160.15
重度γ/(kN/·m-3均值μ18.821.5正态分布
变异系数COV0.200.18
弹性模量E/MPa30.533 600.00常量
泊松比(ν)0.350.26常量

图3

边坡有限元分析模型"

图4

边坡可靠度分析流程图"

表2

失效概率与岩土结构安全性能的关系"

失效

概率

可靠度指标性能水平处理措施
3.0×10-75正常维护
3.0×10-54较好正常交通情况下维护
0.0013平均安全水平以上关闭以修复
0.0062.5平均安全水平以下频繁停用以修复
0.0232较差频繁较长时间停用以修复
0.071.5不容乐观集中修复
0.161灾难性的紧急行动以减轻灾害

表3

各抽样配点方法对应的R2验算结果"

计算点均匀设计抽样LHS改进LHS分层抽样
样本点10.99960.99990.9999
其他验算点0.98770.99720.9980.991

表4

各抽样配点方法所得失效概率及其变异系数"

抽样方法PfCOVPf
Monte-Carlo法0.1843-
均匀设计抽样0.24612.387×10-7
LHS0.18401.174×10-7
改进LHS0.18411.652×10-7
分层抽样0.21271.985×10-7

图5

边坡功能函数的CDF曲线"

1 蒋水华.水电工程边坡可靠度非侵入式随机分析方法[D].武汉:武汉大学,2014.
JiangShuihua.A Non-intrusive Stochastic Method for Slope Reliability in Hydroelectricity Engineering[D]. Wuhan:Wuhan University,2014.
2 陈虬.随机有限元法及其工程应用[M].成都:西南交通大学出版社,1993.
ChenQiu.Stochastic Finite Element Method and Its Application in Engineering[M].Chengdu:Southwest Jiaotong University Press,1993.
3 李典庆,蒋水华.边坡可靠度非侵入式随机分析方法[M].北京:科学出版社,2016.
LiDianqing,JiangShuihua.Non-intrusive Stochastic Analysis Method for Slope Reliability[M].Beijing:Science Press,2016.
4 IsulapalliS S,RoyA,GeorgopoulousP G.Stochastic response surface methods for uncertainty propagation:Application to environmental and biological systems[J].Risk Analysis,1998,18(3):351-363.
5 蒋水华,李典庆,黎学优,等.锦屏一级水电站左岸坝肩边坡施工期高效三维可靠度分析[J].岩石力学与工程学报,2015,34(2):349-361.
JiangShuihua,LiDianqing,LiXueyou,et al.Efficient three-dimensional reliability analysis of an abutment slope at the left bank of Jinping I hydropower station during construction[J].Chinese Journal of Rock Mechanics & Engineering,2015,34(2):349-361.
6 李典庆,蒋水华,周创兵.基于非侵入式随机有限元法的地下洞室可靠度分析[J].岩土工程学报,2012,34(1):123-129.
LiDianqing,JiangShuihua,ZhouChuangbing.Reliability analysis of underground rock caverns using non-intrusive stochastic finite element method[J].Chinese Journal of Geotechnical Engineering,2012,34(1):123-129.
7 胡冉,陈益峰,李典庆,等.心墙堆石坝渗透稳定可靠性分析的随机响应面法[J].岩土力学,2012,33(4):1051-1060.
HuRan,ChenYifeng,LiDianqing, et al.Reliability analysis of seepage stability of core-wall rockfill dam based on stochastic response surface method[J].Rock and Soil Mechanics, 2012,33(4):1051-1060.
8 ZouJ Z,WilliansD J,XiongW L.Search for critical silp surface based on finite element method[J].Canadian Geotechnical Journal,1995,32(2):233-246.
9 张璐璐.岩土工程可靠度理论[M].上海:同济大学出版社,2011.
ZhangLulu.Geotechnical Engineering Reliability Theory[M].Shanghai:Tongji University Press,2011.
10 李典庆,周创兵,陈益峰,等.边坡可靠度分析的随机响应面法及程序实现[J].岩石力学与工程学报,2010,29(8):1513-1523.
LiDianqing,ZhouChuangbing,ChenYifeng,et al.Reliability analysis of slope using stochastic response surface method and code implementation[J].Chinese Journal of Rock Mechanics & Engineering,2010,29(8):1513-1523.
11 杨绿峰,杨显峰,余波,等.基于逐步回归分析的随机响应面法[J].计算力学学报,2013,30(1):88-93.
YangLufeng,YangXianfeng,YuBo,et al.Improved stochastic response surface method based on stepwise regression analysis[J].Chinese Journal of Computational Mechanics,2013,30(1):88-93.
12 胡冉,李典庆,周创兵,等.基于随机响应面法的结构可靠度分析[J].工程力学,2010,27(9):192-200.
HuRan,LiDianqing,ZhouChuangbing,et al.Structural reliability analysis using stochastic response surface me-thod[J].Engineering mechanics,2010,27(9):192-200.
13 蒋水华,李典庆,曹子君,等.考虑参数空间变异性的边坡系统可靠度分析[J].应用基础与工程科学学报, 2014(5):841-855.
JiangShuihua,LiDianqing,CaoZijun,et al.System reliability analysis of slope considering spatial variability of soil properties[J].Journal of Basic Science and Engineering,2014(5):841-855.
14 方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
FangKaitai.Homogeneous Design and Homogeneous Design Tables[M].Beijing:Science Press,1994.
15 张崎.基于Kriging方法的结构可靠性分析及优化设计[D].大连:大连理工大学,2005.
ZhangQi.Structural Reliability Analysis and Optimization Design based on Kriging Method[D].Dalian:Dalian University of Technology,2005.
16 张巍峰,车延博,刘阳升.电力系统可靠性评估中的改进拉丁超立方抽样方法[J].电力系统自动化,2015,39(4):52-57.
ZhangWeifeng,CheYanbo,LiuYangsheng.Improved latin hypercube sampling method for reliability evaluation of power systems[J].Automation of Electric Power Systems,2015,39(4):52-57.
17 刘鹏.基于改进拉丁超立方重要抽样方法的结构可靠性分析[D].广州:暨南大学,2016.
LiuPeng.Structural Reliability Analysis (SRA) Based on Improved Latin Hypercube Important Sampling[D].Guangzhou:Jinan University,2016.
18 曹春野.基于改进的拉丁超立方参数随机地下水数值模拟研究[D].北京:中国地质大学(北京),2015.
CaoChunye.Study on Parameter Stochastic Groundwater Numerical Simulation Based on Improved Latin Hypercube Sampling[D].Beijng:China University of Geosciences(Beijing),2015.
19 PhoonK K,KulhawyF H.Characterization of geotechnical variability[J].Canadian Geotechnical Journal,1999,36(4):612-624.
20 PhoonK K,KulhawyF H.Evaluation of geotechnical property variability[J].Canadian Geotechnical Journal,1999,36(4):625-639.
[1] 贾明涛, 涂小腾, 任助理, 陈鑫, 宋华强. 基于改进最大流最小割算法的露天境界优化及应用[J]. 黄金科学技术, 2018, 26(3): 318-324.
[2] 杨明财, 盛建龙, 叶祖洋, 董舒. 基于FlAC3D的露天矿边坡稳定性及影响因素敏感性分析[J]. 黄金科学技术, 2018, 26(2): 179-186.
[3] 张学仁. 破拱空气炮及其在金属选矿厂中的应用[J]. J4, 2005, 13(03): 36-39.
[4] 赵瑞民. 简易真空装置在离心式水泵上的应用[J]. J4, 2004, 12(3): 22-24.
[5] 孙旭,张洪伟. 小断面短天井掘进方法探索[J]. J4, 2002, 10(5): 43-46.
[6] 陆爱珍,辛金生,富利娥. 坚硬岩体巷道掘进爆破技术方案设计与试验[J]. J4, 2001, 9(5): 39-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 路彦明 ,张玉杰 ,张栋 ,范俊杰 ,潘爱军 ,赵军 ,董华芳. 剪切带与金矿成矿研究进展[J]. J4, 2008, 16(5): 1 -6 .
[2] 林正泽, 卓奉吉, 刘伟, 张艳梅. 物探在白岭铜锌矿床勘探中的应用效果[J]. J4, 2009, 17(2): 42 -45 .
[3] 杨理勤, 冯亮, 李玄辉, 罗学辉. 中国当代金的经典分析技术[J]. J4, 2006, 14(5): 38 -40 .
[4] 蒋礼贤, 陈竹英. 大崎山地区含金石英脉型金矿地质特征及其成因[J]. J4, 1990, 0(1): 9 -13 .
[5] 艾晓军,杨理勤,冯亮,何思雨. 泡沫塑料吸附—石墨炉测定痕量金方法的改进[J]. J4, 2011, 19(5): 51 -52 .
[6] 王增涛,杨晨,孙延光,李福生. 甘肃寨上金矿床资源量可靠性审核方法探讨[J]. 黄金科学技术, 2013, 21(4): 26 -31 .
[7] 张毓芳. 某金矿选厂含铜浮选尾矿氰化吸附试验研究[J]. 黄金科学技术, 2013, 21(5): 149 -153 .
[8] 雷思明,宋永辉. 电化学法深度处理低浓度贵金属贫液的研究[J]. 黄金科学技术, 2016, 24(3): 100 -105 .
[9] 常河,高建国,潘萍,郭志海. 多元地学信息系统的构建与实现[J]. 黄金科学技术, 2016, 24(5): 102 -107 .
[10] 盛勇,刘庭耀,韩丽辉,刘青. 含金废液脱氰过程固—液搅拌的数值模拟[J]. 黄金科学技术, 2016, 24(5): 108 -114 .