img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2016, Vol. 24 ›› Issue (3): 64-69.doi: 10.11872/j.issn.1005-2518.2016.03.064

• 采选技术与矿山管理 • 上一篇    下一篇

基于PCA-BP神经网络模型的充填体强度预测

史秀志,范玉乾*,尚雪义   

  1. 中南大学资源与安全工程学院,湖南  长沙   410083
  • 收稿日期:2015-10-26 修回日期:2016-02-26 出版日期:2016-06-28 发布日期:2016-10-08
  • 通讯作者: 范玉乾(1991-),男,宁夏固原人,硕士研究生,从事采矿工艺与爆破研究工作。 E-mail:13875986863@163.com
  • 作者简介:史秀志(1966-),男,河北邢台人,教授,博士生导师,从事爆破工程与安全技术研究工作。csublasting@163.com
  • 基金资助:

    国家科技支撑计划项目“复杂地下金属矿二步开采与回收技术”(编号:2013BAB02B05)资助

Strength Prediction of Filling Body Based on PCA and BP Neural Networks

SHI Xiuzhi,FAN Yuqian,SHANG Xueyi   

  1. School of Resources and Safety Engineering,Central South University,Changsha   410083,Hunan,China
  • Received:2015-10-26 Revised:2016-02-26 Online:2016-06-28 Published:2016-10-08

摘要:

充填体强度预测对矿山充填设计具有重要意义。选取胶砂比、水泥、石灰、石膏及矿渣含量作为充填体强度影响因素,借助主成分分析(PCA)消除自变量间相关性,降低数据维数,再结合BP神经网络具有较好预测性的特点,建立了PCA-BP模型以预测充填体强度。对18组充填体试验数据进行主成分分析,5个影响因子降维为3个主成分,将其作为BP神经网络的输入因子,进而探讨了隐含层神经元个数对充填体强度训练和预测精度的影响,并比较了PCA-BP神经网络、标准BP神经网络和二次线性回归效果。结果表明:PCA-BP模型最佳预测结构为3-7-1;PCA-BP神经网络结果优于BP神经网络和二次线性回归;PCA-BP神经网络训练和预测的最大相对误差仅为3.65%,实现了充填体强度的准确预测。PCA-BP模型为充填体强度预测提供了一种高精度的分析方法。

关键词: 充填体强度, 预测模型, 主成分分析, BP神经网络, 相关系数

Abstract:

The strength prediction of filling body is of significant importance in the design of mine filling.The cement to sand ration and the contents of cement,lime,gypsum and slag are selected as influence indexes of the strength of filling body.In addition,the PCA-BP model to predict strength of filling body was constructed by taking advantages that the principal component analysis (PCA) can eliminate the correlation between independent variables and reduce the input data and the BP neural networks has a good predictability.The PCA has been tested on 18 pieces of experimental data,and the five influencing factors that were eventually reduced into three main factors.Then these three main factors were used as BP neural networks input data.Furthermore,the influence of hidden layer neuron on model training process and prediction accuracy was discussed,and results of PCA-BP method,standard BP method and quadratic polynomial regression method were compared.The results show that the optimal structure of PCA-BP method is 3-7-1 and the PCA-BP method is better than the standard BP method and the quadratic polynomial regression method with an error ratio within 3.65%,achieving an accurate prediction for the strength of filling body.In a conclusion,the PCA-BP model provides a high accuracy means for the prediction of the strength of filling body.

Key words: strength of filling body, prediction model, principal component analysis, BP neural networks, cor-relation coefficient

中图分类号: 

  • TD323

[1] 邓代强,姚中亮,朱永建,等.胶结充填体强度预测及水泥消耗量反演计算[J].中国矿业大学学报,2013,42(1):39-44.
[2] 杨经充,王海涛,刘文忠.多矿区充填系数整合提效生产模式在焦家金矿的应用[J].黄金科学技术,2013,21(2):69-72
[3] Belem T,Benzaazoua M.Design and application of underground mine paste backfill technology[J].Geotechnical and Geological Engineering,2008,26(2):147-174.
[4] 于常先,许子刚,王平,等.阶段空场与上向分层联合采矿法应用实践[J].黄金科学技术,2015,23(4):35-38.
[5] 李一帆,张建明,邓飞,等.深部采空区尾砂胶结充填体强度特性试验研究[J].岩土力学,2005,26(6):865-868.
[6] 韩斌,张升学,邓建,等.基于可靠度理论的下向进路充填体强度确定方法[J].中国矿业大学学报,2006,35(3):372-376.
[7] 韩斌,王贤来,肖卫国.基于多元非线性回归的井下采场充填体强度预测及评价[J].采矿与安全工程学报,2012,29(5):714-718.
[8] Chang Q L,Zhou H Q,Hou C J.Using particle swarrm optimizationalgorithm in an artificial neural network to  forecast the strength of paste filling material[J].Journal of China University of Mining and Technology,2008,18(4): 551-555.
[9] 尚雪义,李夕兵,王泽伟,等.基于PLS的下向进路多参数优化方法[J].科技导报,2015,33(1):63-69.
[10] 崔明义,孙恒虎.基于MATLAB的胶结充填材料BP神经网络质量模型[J].有色金属,2003,55(1):121-123.
[11] 张钦礼,李谢平,杨伟,等.基于BP网络的某矿山充填料浆配比优化[J].中南大学学报(自然科学版),2013,44(7):2867-2874.
[12] 王新民,刘吉祥,陈秋松,等.超细全尾砂絮凝沉降参数优化模型[J].科技导报,2014,32(17):23-28.
[13] 刘志祥,周士霖,郭永乐.磷石膏充填体强度GA-BP神经网络预测模型[J].矿冶工程,2011,31(6):1-5.
[14] 常庆粮,周华强,秦剑云,等.膏体充填材料配比的神经网络预测研究[J].采矿与安全工程学报,2009,26(1):74-77.
[15] 魏微,高谦.改进的BP神经网络模型预测充填体强度[J].哈尔滨工业大学学报,2013,45(6):90-95.
[16] 吕伏,梁冰,孙维吉,等.基于主成分回归分析法的回采工作面瓦斯涌出量预测[J].煤炭学报,2012,37(1):113-116.
[17] 齐敏芳,付忠广,景源,等.基于信息熵与主成分分析的火电机组综合评价方法[J].中国电机工程学报,2013,33(2):58-64.
[18] 陈建宏,刘浪,周智勇,等.基于主成分分析与神经网络的采矿方法优选[J].中南大学学报(自然科学版),2010,41(5):1967-1972.
[19] Specht D F.A general regression neural network[J].IEEE Transactions on Neural Networks,1991,2(6):568-576.
[20] Hagan M T,Demuth H B,Beale M H,et al.Neural Network Design[M].Boston:PWS Publishing Company,1997:357.
[21] 喻寿益,王吉林,彭晓波.基于神经网络的铜闪速熔炼过程工艺参数预测模型[J].中南大学学报(自然科学版),2007,38(3):523-527.

[1] 曹世荣,肖伟晶,李永欣,王晓军,卓毓龙,冯萧. 循环载荷下块石胶结充填体声发射特性研究[J]. 黄金科学技术, 2017, 25(3): 92-97.
[2] 孙杨,罗黎明,邓红卫. 金属矿山深部采场稳定性分析与结构参数优化[J]. 黄金科学技术, 2017, 25(1): 99-105.
[3] 李启月,韦佳瑞,李易,黄武林,张成君. 施工方案技术改进在某金矿深孔爆破成井中的应用[J]. 黄金科学技术, 2016, 24(3): 1-8.
[4] 卓毓龙,陈辰,曹世荣,王晓军,冯萧. 块石对充填体强度特性及损伤演化的影响[J]. 黄金科学技术, 2016, 24(3): 76-80.
[5] 戴兴国,唐凌,陈增剑,聂峥. 基于λ模糊测度和Choquet积分的回采方案动态优选[J]. 黄金科学技术, 2016, 24(2): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!