img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2015, Vol. 23 ›› Issue (1): 90-94.doi: 10.11872/j.issn.1005-2518.2015.01.090

• 冶炼技术与装备研发 • 上一篇    

C923萃取铜电解液中砷和铋的试验研究

王瑞永1,2   

  1. 1.紫金矿业集团股份有限公司,福建  上杭   364200;
    2.低品位难处理黄金资源综合利用国家重点实验室,福建  上杭   364200
  • 收稿日期:2014-08-17 修回日期:2014-11-10 出版日期:2015-02-28 发布日期:2015-04-07
  • 作者简介:王瑞永(1981-),女,河南信阳人,工程师,从事冶金和资源综合利用研究工作。wryongd@sina.com
  • 基金资助:

    国家重点基础研究发展计划项目“含金黄铁矿表面结构研究及浮选药剂设计”(编号:2012(B724202))资助

Experimental Investigation of Using C923 to Extract Arsenic and Bismuth in Copper Electrolyte

WANG Ruiyong1,2   

  1. 1.Zijin Mining Group Co.,Ltd.,Shanghang   364200,Fujian,China;
    2.State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores,Shanghang   364200,Fujian,China
  • Received:2014-08-17 Revised:2014-11-10 Online:2015-02-28 Published:2015-04-07

摘要:

采用C923萃取铜电解液中的砷和铋,考察萃取剂浓度、酸度、萃取时间和相比等因素对砷萃取率的影响,并探讨原液中氯离子浓度对C923萃取铋的影响。结果表明,在优化工艺条件下,砷的单级萃取率为68.41%,三级错流萃取率为97.00%。氯离子浓度为0.86 g/L时,铋的单级萃取率为95.15%。负载相用水二级错流反萃砷,总反萃率为88.20%,再用酒石酸—氢氧化钠混合液反萃铋,反萃率为81.49%。

关键词: 铜电解液, 萃取法, 砷, 铋, C923萃取剂

Abstract:

The C923 was employed to leach arsenic and bismuth in copper electrolyte with the purpose to observed influence of the extractant concentration, acidity,leaching time and phase ratio on the extraction rate to arsenic,moreover,the effect of chloride ion concentration on extracting bismuth was discussed as well.The results demonstrated that single-stage extraction rate of arsenic was approximately 68.41% in optimal conditions,and three cross-flow counter-current extraction rate was around 97.00%.However,when chloride ion concentration reached to 0.86 g/L,extraction rate of bismuth was about 95.15%.During the time when applying two cross-flow water with load phase to anti-extract arsenic,the total anti-extraction rate was 88.20%,nonetheless,using mixed solution of tartaric acid-sodium hydroxide to anti-extract bismuth,the result of anti-extraction rate was around 81.49%.

Key words: copper electrolyte, extraction method, arsenic, bismuth, C923 extraction regen

中图分类号: 

  • TF831

[1] 刘东云.铜电解液净化除砷及电解工艺条件对电铜质量的影响[D].沈阳:东北大学,2009:3-4.
[2] 肖发新,毛建伟,曹岛,等.铜电解液自净化研究进展[J].中国有色冶金,2011,(6):73-79.
[3] 钟点益.国外铜电解液净化除砷、锑、铋的方法[J].中国有色冶金,1991,(5):30-34.
[4] 罗劲松.赤峰云铜铜电解净液工序的工艺设计[D].昆明:昆明理工大学,2007.
[5] 郑金旺.铜电解精炼时砷、锑、铋的分配行为及其应用研究[D].长沙:中南大学,2005.
[6] 黄善富.浅析砷锑在铜电解过程中的行为[J].中国有色冶金,2002,31(3):20-23.
[7] 毛建伟.砷在铜电解液净化中的作用机理及价态转化[D].洛阳:河南科技大学,2013.
[8] 何万年,赵旺盛,何思郏.离子交换法净化铜电解液中的铋和锑[J].新疆有色金属,1997,(4):27-32.
[9] 陈敬军,蒋柏泉,王伟.除砷技术现状与进展[J].江西化工,2004,(2):1-4.
[10] 林国梁,陈思,白俊智.从含砷工业废水中萃取富集砷的研究[J].沈阳建筑大学学报:自然科学版,2006,22(6):972-976.
[11] 曹洪斌,申明金,陈莲惠.Cyanex 923在金属溶剂萃取中的应用[J].四川化工,2013,16(2):27-29.
[12] 廖春发,焦芸芬.Cyanex系列膦类萃取剂用于有色金属分离的现状[J].有色金属工程,2005,57(4):76-80.
[13] 童长仁,武金朋,李俊朝,等.TBP与N1923协同萃取铜电解液中的砷锑铋[J].有色金属:冶炼部分,2012,(5):17-20.

[1] 宋言, 杨洪英, 佟琳琳, 马鹏程, 金哲男. 甘肃某复杂难处理金矿细菌氧化—氰化实验研究[J]. 黄金科学技术, 2018, 26(2): 241-247.
[2] 赵鹤飞,杨洪英*,张勤,佟琳琳,金哲男,陈国宝. 硫代硫酸盐浸金各因素影响研究现状[J]. 黄金科学技术, 2018, 26(1): 105-114.
[3] 段敏静,梁长利,许宝泉,陈陵康 . 生物提金氧化液中铁的选择性沉淀[J]. 黄金科学技术, 2017, 25(6): 121-126.
[4] 党晓娥,王璐,孟裕松,宋永辉,吕超飞 . 某环保药剂的浸金性能及贵液中金的活性炭吸附特性[J]. 黄金科学技术, 2017, 25(6): 114-120.
[5] 宋永辉,姚迪,张珊,田宇红,兰新哲. 三维电极处理氰化废水的研究[J]. 黄金科学技术, 2017, 25(5): 116-121.
[6] 杨玮,王刚,曹欢,张凯. 含铜金精矿焙烧—酸浸对金、银浸出率的影响[J]. 黄金科学技术, 2017, 25(5): 122-126.
[7] 刘倩,杨洪英,佟琳琳. Phanerochaete chrysosporium降解碳质金矿中元素碳高关联度变量的筛选[J]. 黄金科学技术, 2017, 25(5): 140-144.
[8] 王硕. 甘肃某金矿浸金工艺试验研究[J]. 黄金科学技术, 2017, 25(4): 122-127.
[9] 党晓娥,孟裕松,王璐,宋永辉,吕超飞,贠亚新. 黄金冶炼两大新技术应用现状与发展趋势探讨[J]. 黄金科学技术, 2017, 25(4): 113-121.
[10] 张玉秀,郭德庚,李媛媛,张广积 . 含砷难处理金精矿生物预氧化过程中砷价态的变化及其对细菌的影响[J]. 黄金科学技术, 2017, 25(4): 106-112.
[11] 盛勇,刘庭耀,韩丽辉,刘青. 含金废液脱氰过程固—液搅拌的数值模拟[J]. 黄金科学技术, 2016, 24(5): 108-114.
[12] 肖力,吕翠翠,王永良,叶树峰. 硫代硫酸钠—铁氰化钾体系提取含金物料中金银的研究[J]. 黄金科学技术, 2016, 24(5): 115-120.
[13] 王永良,吕翠翠,肖力,丁剑,付国燕,叶树峰. 氰化尾渣中抑砷富集硫铁的研究[J]. 黄金科学技术, 2016, 24(4): 144-148.
[14] 张俊杰,王帅,张天齐,李超,李宏煦 . 适于金矿堆浸的制粒新技术研究[J]. 黄金科学技术, 2016, 24(4): 149-153.
[15] 刘金贵,张淑英,李政军. 某提金剂炭浆提金试验研究及应用[J]. 黄金科学技术, 2016, 24(4): 164-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!