img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2021, 29(4): 525-534 doi: 10.11872/j.issn.1005-2518.2021.04.010

采选技术与矿山管理

矿岩开挖松动区厚度预测及非爆机械化开采判据

景岳,1, 王少锋1, 鲁金涛,2

1.中南大学资源与安全工程学院,湖南 长沙 410083

2.应急管理部研究中心,北京 100013

Thickness Prediction of the Excavation Damage Zone and Non-explosive Mechanized Mining Criterion

JING Yue,1, WANG Shaofeng1, LU Jintao,2

1.School of Resource and Safety Engineering,Central South University,Changsha 410083,Hunan,China

2.Research Center of the Ministry of Emergency Management,Beijing 100013,China

通讯作者: 鲁金涛(1988-),男,湖南常德人,工程师,从事矿山安全生产和灾害防治、城市风险评估等研究工作。lujintao1415@163.com

收稿日期: 2020-12-29   修回日期: 2021-04-08   网络出版日期: 2021-10-11

基金资助: 国家自然科学基金项目“深部高应力下镐形截齿破岩特性及诱导调控机理”.  51904333

Received: 2020-12-29   Revised: 2021-04-08   Online: 2021-10-11

作者简介 About authors

景岳(1995-),男,山东济南人,硕士研究生,从事深部硬岩破裂方面的研究工作195511040@csu.edu.cn , E-mail:195511040@csu.edu.cn

摘要

非爆机械化开采的可行性与待截割矿体周围松动区的厚度之间有着密切联系,研究待截割矿体周围松动区厚度对于合理进行机械化开采具有重要意义。综合考虑松动区厚度的成因及特点,选取了单轴抗压强度、岩体质量等级、埋深、岩石容重和开挖跨度5个影响因素作为指标。首先利用从多个矿山现场收集的69组数据,建立了松动区厚度的回归预测模型,并通过熵权法评价5个影响因素对于松动区厚度的影响权重;然后根据所得的松动区厚度预测模型对开磷马路坪矿开采现场松动区厚度进行预测,并依此建立了基于矿岩开挖松动区厚度的非爆机械化开采判据;最后对现阶段开磷马路坪矿非爆机械化开采的可行性进行评价。结果表明:本研究得到的基于矿岩开挖松动区厚度的非爆机械化开采判据,可以较好地评判开磷马路坪矿非爆机械化开采的可行性和合理性。

关键词: 深部开采 ; 开挖松动区 ; 非爆机械化开采 ; 回归分析 ; 熵权法 ; 开采判据

Abstract

Deep mining has gradually become a new trend in underground mining,and the non-explosive mechanized mining method,as one of the alternatives to conventional drilling and blasting excavation,has shown great advantages in rock-breaking efficiency and safety.Non-explosive mechanized mining of hard rock mines is a technical problem that needs to be solved to realize continuous mining and safe,efficient and green development of deep resources in hard rock mines.In the roadway excavation,the initial stress state of the surrounding rock is destroyed to form a secondary stress field resulting in the phenomenon of stress concentration,which will form a “crushing zone” around the surrounding rock,called the excavation damage zone (EDZ).The feasibility of non-explosive mechanized mining is closely related to the thickness of the EDZ around the ore to be cut.The existing research shows that the thickness of the EDZ is mainly affected by rock properties,ground stress,geological conditions and excavation parameters and other factors.So in this paper,the characteristics of the EDZ thickness were considered comprehensively,and five influencing factors of uniaxial compression strength,rock mass grade,burial depth,rock bulk and excavation span were selected.Through multiple regression analysis,using 69 sets of data collected at multiple mine sites,a functional relationship between the thickness of the EDZ and five influencing factors was established,so as to obtain the prediction model of the thickness of the EDZ.The results were obtained by comparing the measured data of the EDZ thickness with the prediction values obtained from the EDZ thickness prediction model.The high determination coefficient and the low root mean squared error show that the established EDZ thickness prediction model and the non-explosive mechanized mining criterion have good reliability.In addition,the weights of the five influencing factors on the thickness of the EDZ were evaluated by the entropy weight method and ranked in order.The results show that the uniaxial compressive strength has the largest influence on the thickness of the EDZ,the rock mass grade has the smallest influence on the thickness of the EDZ,and the burial depth,rock bulk density,and excavation span have increasing influence on the thickness of the EDZ.The regression prediction model can better predict the thickness of the EDZ at Kailin Maluping mine,and the predicted value meets the requirements of non-explosive mechanized mining,verifying the feasibility and rationality of non-explosive mechanized mining.

Keywords: deep mining ; excavation damage zone ; non-explosive mechanized mining ; regression analysis ; entropy weight method ; mining criterion

PDF (2927KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

景岳, 王少锋, 鲁金涛. 矿岩开挖松动区厚度预测及非爆机械化开采判据[J]. 黄金科学技术, 2021, 29(4): 525-534 doi:10.11872/j.issn.1005-2518.2021.04.010

JING Yue, WANG Shaofeng, LU Jintao. Thickness Prediction of the Excavation Damage Zone and Non-explosive Mechanized Mining Criterion[J]. Gold Science and Technology, 2021, 29(4): 525-534 doi:10.11872/j.issn.1005-2518.2021.04.010

在巷道开挖时,围岩初始应力状态被打破形成二次应力场,进而产生应力集中现象,当应力集中到一定程度后会引发围岩破裂,形成一个围岩“破碎带”,称之为围岩松动区。松动区内矿岩松动破碎,可截割性较好。松动区厚度体现了作业面周围矿岩的破裂范围,是决定非爆机械化开采可行性的重要参数。随着深部开采逐渐成为地下矿山开采的新趋势,非爆机械化开采方法作为常规钻爆开挖的替代方法之一,能够显著提高破岩效率并促进地下资源的安全、高效、绿色开发。

国内外学者从理论和试验2个方面对松动区厚度开展了一系列研究,现有研究表明:松动区厚度主要受岩石性质、地应力、地质条件和开挖参数等因素的影响(Wang et al.,2019Martini et al.,1997Martino,2004Read et al.,2004)。部分学者研究了岩石单轴抗压强度、埋深、巷道跨度和岩体性质等对松动区厚度的影响(刘刚等,2021黄锋等,2016吴清星等,2012)。关于围岩松动区的其他影响因素,靖洪文等(1999)利用实测数据研究了围岩松动区与围岩应力、围岩强度、采深、临界采深和采动等影响因素之间的关系。还有学者通过有限元、离散元和材料点休眠等方法建立了松动区模型并用于模拟松动区的形成规律及分布特征(Han et al.,2020Alcolea et al.,2019Gao et al.,2020Farahmand et al.,2020)。

随着探测技术的进步,一些新的松动区厚度测试方法被引入到采矿行业,研究人员利用超声波探测法、多点位移计量测法和地质雷达探测法等多种松动圈测试方法对不同埋深和围岩等级条件下的松动区进行了研究(吴涛等,2015黄锋等,2016孟庆彬等,2010Walton et al.,2015)。一些学者运用已有的理论建立了松动区范围的理论计算方法。如:李伟利等(2011)根据霍克布朗准则提出了松动区半径计算公式并进行了现场测试;赵国彦等(2016)引入量纲分析法,选取多个物理量构建了松动区厚度的预测模型。在松动区预测方面,有学者通过逐步回归分析法、人工鱼群算法、粒子群算法、遗传算法和神经网络等数值算法建立了松动区厚度的预测模型并进行了现场验证(马荣田,2006孙希奎等,2016胡军等,2014马文涛,2007许国安等,2005高玮等,2002江权等,2007)。但现有的松动区预测模型考虑的影响因素较少,缺少各种开采条件下的开采数据及松动区厚度数据,并且未建立合理的机械化开采判据。

本文通过回归分析建立了以单轴压缩强度、岩体质量等级、埋深、岩石容重和开挖跨度为影响因素的松动区厚度预测模型。利用熵权法对各影响因素进行权重评价,将开磷马路坪矿现场实测的松动区厚度数据与模型计算得到的预测数据进行对比,验证了开磷马路坪矿非爆机械化开采的可行性和合理性,并建立了以矿岩开挖松动区厚度为依据的非爆机械化开采判据,为实现硬岩矿山非爆机械化连续开采和安全、高效、绿色开发提供理论和实践依据。

1 回归分析

1.1 试验数据

在工程实践中收集到69组关于矿岩松动区的基础数据,分别来自湘西金矿、玲珑金矿、凡口铅锌矿和开阳磷矿等矿山,包含单轴抗压强度σc、岩体质量等级F、埋深H、岩石容重γ、开挖跨度S和松动区厚度L表1)。其中,松动区厚度通过钻孔超声波探测和钻孔电视监测方法实测获得。将搜集到的现场数据进行分析处理及回归拟合,再由得到的回归系数建立松动区厚度与5个影响因素之间的函数关系式,从而得到松动区厚度的预测模型。

表1   矿山现场测试数据

Table 1  Mine field test data

序号单轴抗压强度σc/MPa岩体质量等级F埋深H/m

岩石容重

γ/(kN·m-3

开挖跨度S/m松动区厚度L/m序号单轴抗压强度σc/MPa岩体质量等级F

埋深

H/m

岩石容重γ/(kN·m-3开挖跨度S/m松动区厚度L/m
110.503.037028.83.51.0003622.403.561027.33.61.750
210.104.030531.03.21.3003721.964.562026.13.62.120
39.104.042027.53.21.4003825.644.064026.93.61.980
410.503.035029.43.21.2003921.964.566025.43.62.200
512.604.051025.93.71.4004025.643.061527.13.61.500
612.603.040327.92.91.3004116.804.567024.63.62.350
711.903.029331.53.51.1004225.643.068527.33.61.700
813.304.041027.83.21.4004316.804.570023.43.62.550
911.203.045026.93.01.2004425.643.567528.43.82.100
1062.402.036229.02.60.6004516.805.070523.13.82.850
1111.203.031530.62.81.1004625.643.070028.43.81.780
12101.601.046026.73.20.4004716.805.065024.26.03.450
1313.303.012529.32.81.1004825.644.568028.33.82.350
1428.003.031030.83.20.8004921.965.063026.34.02.600
1518.803.034029.73.41.3005052.003.070028.44.21.700
1610.904.066524.13.61.7005152.003.075028.44.21.700
1714.304.032230.34.41.5005252.003.069028.44.21.400
189.105.045026.93.42.0005352.003.069028.44.61.500
1916.803.024923.93.21.0005440.003.069024.64.61.600
2022.403.029631.43.41.2005525.643.061528.33.61.500
2123.803.017830.12.61.2005616.804.567024.23.62.350
2211.964.026824.83.41.4005725.643.068528.33.61.700
23110.201.018029.82.81.0005834.374.066027.24.51.650
2414.303.023624.73.01.20059147.895.066032.34.02.340
2513.303.032130.43.01.1006071.263.060027.13.81.100
2611.203.09728.32.61.1006139.193.01 00028.64.61.930
2773.602.034029.73.00.80062158.835.080028.15.62.900
2813.304.045026.93.61.60063147.894.080032.25.62.690
2932.202.034029.73.20.70064109.503.080026.75.62.270
3010.105.047026.54.02.20065142.163.037031.13.41.200
3114.303.042027.53.61.10066142.163.045031.13.41.400
3211.904.052025.83.81.70067142.163.053031.13.41.550
339.105.047026.53.62.10068142.163.068031.13.41.800
3410.104.046726.63.41.80069142.163.078031.13.41.975
3516.804.560025.43.62.250

新窗口打开| 下载CSV


1.2 回归模型

将岩石单轴抗压强度、岩体质量等级、埋深、岩石容重和开挖跨度5个影响因素进行组合,建立了预测松动区厚度的量纲统一化公式。将岩石单轴抗压强度、岩体质量等级、埋深和岩石容重组合为与松动区厚度量纲一致的岩性指标,将岩体质量等级和开挖参数组合为与松动区厚度量纲一致的开挖参数指标。采用多元回归分析方法,将岩性指标和开挖参数指标分别作为X轴和Y轴,得到2个指标与松动区厚度之间的函数关系式:

L=β1+H2F4γσcβ2+FSβ3

式中:L为松动区厚度;β1β2β3为回归系数;H2F4γσc为岩性指标;FS为开挖参数指标;H为埋深;F为岩体质量等级;γ为岩石容重;σc为岩石单轴抗压强度;S为开挖跨度。

利用在多个矿山收集的69组现场数据(表1),通过多元线性回归拟合得到3个回归系数,β1=0.3533,β2=9.8865×10-10β3=0.0919,将这3个回归系数代入式(1)得到式(2)。通过式(2)绘制松动区厚度回归预测模型(图1),从图中可以看出松动区厚度随着岩性指标和开挖参数指标的增大而增大。

L=0.3533+9.8865×10-10H2F4γσc+0.0919FS

图1

图1   松动区厚度回归预测模型

Fig.1   Regression prediction model of EDZ thickness


1.3 模型验证

通过式(3)和式(4)计算确定性系数R2和均方根误差RMSE来评价松动区厚度预测模型的合理性,计算结果为R2=0.8076,RMSE=0.2601,较大的确定性系数及较小的均方根误差显示,所建立的松动区厚度预测模型具有较高的可靠性。

R2=1-i=1myitest-ŷimod2/i=1m(y(i)test-y¯(i)test)2
RMSE=1mi=1m(y(i)test-ŷ(i)mod)2

式中:yitest为现场测试值;ŷ(i)mod为模型预测值;y¯(i)test为现场测试平均值;m为现场测试数据个数。

将松动区厚度预测模型计算得到的预测值与对应的现场实测松动区厚度数据进行比较,并组合作为数据点绘制于图2所示的散点图上。从图2中可以看出,松动区厚度预测值和实测值多数集中分布在对角线上,说明预测值与实测值之间的差异较小,证明了松动区厚度预测模型的可靠性。

图2

图2   现场测试值与预测值散点对比图

Fig.2   Comparison diagram of scatter plot between field test values and predicted values


2 熵权法评价权重

熵权法是一种客观赋权法,其仅依赖于数据本身的离散性,根据指标变异性的大小来确定客观权重。通过使用熵权法对5个影响因素进行权重评价,确定各因素对松动区厚度的影响大小。熵权法赋权步骤如下:

(1)数据标准化。将各个指标的数据进行标准化处理,将不同量纲的指标同量纲化,给定K个指标X1X2,…,XK,其中Xi={x1x2,…,xn},各指标数据标准化后的值为X ΄1X ΄2,…,X ΄K。数据标准化公式为

x'ij=Xij-min (Xj)max Xj-min (Xj)

(2)计算各个指标信息熵。若某个指标的信息熵Ej越小,表明指标值的变异程度越大,指标提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。相反,某个指标的信息熵越大,表明指标值的变异程度越小,指标提供的信息量越少,在综合评价中所起到的作用也越小,其权重也就越小。先按照式(6)计算第i个数据的第j个指标的比重,再按照式(7)计算第j个指标的信息熵。

yij=x'iji=1mx'ij
Ej=-ki=1myijln yij

式中:k为常数,k=ln(m-1

(3)计算各个指标权重。根据式(7)计算得到的各指标信息熵,再按式(8)计算各指标权重wj

wj=(1-Ej)(j=1m1-Ej)

按照熵权法计算权重的步骤,最终确定单轴抗压强度、岩体质量等级、埋深、岩石容重和开挖跨度5个影响因素对于松动区厚度的影响权重(表2),并且依次对各个影响因素的影响权重进行排序。

表2   松动区厚度影响因素权重

Table 2  Weights of factors influencing of EDZ thickness

影响因素权重
单轴抗压强度σc0.5865
岩体质量等级F0.0607
埋深H0.0929
岩石容重γ0.1024
开挖跨度S0.1574

新窗口打开| 下载CSV


结果表明:单轴抗压强度对于松动区厚度的影响权重最大,岩体质量等级对于松动区厚度的影响权重最小,埋深、岩石容重和开挖跨度对于松动区厚度的影响权重依次增大。因此,岩石单轴抗压强度和开挖跨度对于开挖后松动区厚度有较大影响。

3 现场测试

3.1 测试方案

试验区域矿体位于开磷马路坪矿580 m中段下盘矿1盘区,埋深为490 m(加上地表山体,实际埋深近千米)。开挖采准巷道后,试验区域矿体存在3个自由面,在每个自由面上布置上下两排共6个监测孔,3个自由面共布置18个深度为3.5 m的监测孔,然后通过数字钻孔电视监测钻孔内部情况。在数字钻孔电视图像分析软件中嵌入数字图像处理模块,对裂隙进行识别和表征,通过观察沿钻孔深度的裂隙分布,以确定裂隙密度的突变,突变的位置标志着原始岩体与受损岩体之间的分界点,从该点到孔口距离即为钻孔中的松动区厚度,再加上矿体外部钻孔后的垮落厚度,以此来确定各监测点实际松动区的厚度,进而确定矿柱松动区范围,监测孔布置图如图3所示。

图3

图3   监测孔布置图

Fig.3   Layout drawing of monitoring holes


3.2 测试设备及过程

首先测量下部钻孔松动区,然后借助凿岩台车测量上部钻孔松动区。通过螺母将钻孔摄像头与数根连接杆进行连接,再与数根金属杆连接,钻孔摄像头和位移罗盘均通过连接线与数字钻孔电视连接,摄像头连接线与位移罗盘相连,连接线走动带动罗盘上的齿轮转动以此来记录摄像头前进位移。在钻孔电视监测软件中设置好参数后,将钻孔摄像头置于钻孔孔口,将连接线拉直,借助连接杆将摄像头慢速送入监测孔内进行数据采集,数字钻孔电视实时监测记录钻孔内部情况。在数字钻孔电视图像分析软件中嵌入数字图像处理模块,对裂隙进行识别和表征,通过观察沿钻孔深度的裂隙分布,以确定各监测点处松动区的厚度。监测及连接设备见图4,井下现场监测过程见图5

图4

图4   监测及连接设备

a-钻孔电视;b-钻孔摄像头;c-连接螺母;d-金属连接杆;e-位移罗盘;f-摄像头连接线;g-位移罗盘连接线;h-摄像头连接头;i-摄像头连接插头;j-位移罗盘连接插头

Fig.4   Monitoring and connecting devices


图5

图5   现场监测

Fig.5   Field monitoring


3.3 松动区厚度测试结果

对钻孔电视监测记录的钻孔内部数据进行处理,得到上下两排各个监测孔内部松动区位置图像,通过识别监测孔内的破碎情况,确定监测孔内部松动区位置。由于监测设备故障及临近采矿扰动影响,1号孔和18号孔孔内破碎程度严重,不符合初始测试试验的要求,在计算每侧松动区厚度平均值时需要舍去。监测孔松动区厚度测量数据及计算后的平均松动区厚度数据见表3

表3   监测孔松动区测量数据

Table 3  Measurement data of the EDZ in monitoring holes

孔号钻孔与水平面夹角θ/(°)钻孔中松动区位置L1/m钻孔后矿岩垮落厚度L2/m松动区实际厚度L3/m松动区平均厚度L4/m
103.260.153.41(舍去)2.33 (左侧:1号~6号孔)
202.560.102.66
302.700.052.75
401.990.122.11
502.100.132.23
601.660.261.92
702.650.072.722.49 (外侧:7号~12号孔)
802.150.162.31
902.330.022.35
1002.440.182.62
1101.850.472.32
1202.220.392.61
1302.400.052.452.69 (右侧:13号~18号孔)
1402.700.062.76
1502.650.132.78
1602.670.122.79
1702.6802.68
1803.030.133.16(舍去)

新窗口打开| 下载CSV


3.4 松动区厚度预测结果

将现场测试区域的岩性及开挖基础数据代入由式(2)建立的松动区厚度预测模型中,计算得到矿柱左侧、外侧和右侧松动区厚度的预测值,分别为2.22 m、2.18 m和2.18 m。将松动区预测值与现场实测值进行对比可知,左侧和外侧预测值与实测值吻合度较好,右侧预测数据误差较大,但总体误差满足要求。监测孔基础数据见表4

表4   监测孔基础数据

Table 4  Base data of monitoring holes

孔号单轴抗压强度σc/MPa岩体质量等级F埋深H/m岩石容重γ/(kN·m-3开挖跨度S/m平均开挖跨度S/m
1147.89449027.0484.945.06 (左侧:1号~6号孔)
2147.89449027.0485.21
3147.89449027.0485.03
4147.89449027.0484.94
5147.89449027.0485.21
6147.89449027.0485.03
7147.89449027.0484.494.95 (外侧:7号~12号孔)
8147.89449027.0485.46
9147.89449027.0484.89
10147.89449027.0484.49
11147.89449027.0485.46
12147.89449027.0484.89
13147.89449027.0485.854.95 (右侧:13号~18号孔)
14147.89449027.0484.81
15147.89449027.0484.20
16147.89449027.0485.85
17147.89449027.0484.81
18147.89449027.0484.20

新窗口打开| 下载CSV


3.5 非爆机械化开采判据

当松动区厚度大于2 m时,机械化开采效果更好。给定松动区厚度Lm=2 m,利用建立的式(2)得到基于矿岩开挖松动区厚度的非爆机械化开采判据。给定埋深H、岩体质量等级F、岩石容重γ、岩石单轴抗压强度σc和开挖跨度S,代入判据公式[式(9)],若得到的松动区厚度大于等于Lm,即符合非爆机械化开采要求。依据开磷马路坪矿现有的开采条件,松动区厚度预测值均大于2 m,符合非爆机械化开采对于松动区厚度的要求,验证了现阶段开磷马路坪矿非爆机械化开采的可行性和合理性。

Lm=0.3533+9.8865×10-10H3F4γσc+0.0919FS

4 结论

通过收集的不同矿山松动区厚度测试数据,利用回归分析建立了基于单轴抗压强度、岩体质量等级、埋深、岩石容重和开挖跨度5个影响因素的松动区厚度预测模型,利用熵权法评价了各影响因素对于松动区厚度的影响权重,最后将松动区厚度现场测试数据与计算得到的预测值进行对比,得到如下结论:

(1)由岩性指标和开挖参数指标建立的回归预测模型具有较好的确定性系数和均方根误差,建立的松动区厚度预测模型具有较好的可靠性。回归模型显示,松动区厚度随着岩性指标和开挖参数指标的增大而增大。

(2)利用熵权法评价5个影响因素对于松动区厚度的影响权重,结果表明岩石单轴抗压强度和开挖跨度对松动区厚度有重要影响,岩石质量等级对松动区厚度的影响较小。

(3)在开磷马路坪矿进行现场试验,对采集到的松动区厚度数据进行分析处理,结果表明:本文建立的回归预测模型可以较好地预测现阶段开磷马路坪矿矿岩开挖松动区厚度,预测值满足非爆机械化开采的要求。本研究验证了现阶段开磷马路坪矿非爆机械化开采的可行性和合理性,并建立了基于矿岩松动区的非爆机械化开采判据。

http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-4-525.shtml

参考文献

Alcolea R AKuhlmann UMarschall P2019.

3D modelling of the excavation damaged zone using a Marked Point Process technique

[J].Geomechanics for Energy and the Environment,1729-46.

[本文引用: 1]

Farahmand KDiederichs M S2020.

Calibration of coupled hydro-mechanical properties of grain-based model for simulating fracture process and associated pore pressure evolution in excavation damage zone around deep tunnels

[J].Journal of Rock Mechanics and Geotechnical Engineering,131):60-83.

[本文引用: 1]

Gao C LZhou Z QLi Z Hal et2020.

Peridynamics simulation of surrounding rock damage characteristics during tunnel excavation

[J].Tunnelling and Underground Space Technology,97103289.

[本文引用: 1]

Gao WeiZheng Yingren2002.

Evolutionary neural network model on predication of loosen zone around roadway

[J].Chinese Journal of Rock Mechanics and Engineering,(5):658-661.

Han H YFukuda DLiu H Yal et2020.

Combined finite-discrete element modelling of rock fracture and fragmentation induced by contour blasting during tunnelling with high horizontal in-situ stress

[J].International Journal of Rock Mechanics and Mining Sciences,127104214.

[本文引用: 1]

Hu JunWang KaikaiXia Zhiguo2014.

Support vector machine (SVM) prediction of roadway surrounding rock loose circle thickness optimized by layered fish

[J].Metal Mine,4311):31-34.

Huang FengZhu HehuaLi Qiushial et2016.

Field detection and theoretic analysis of loose circle of rock mass surrounding tunnel

[J].Rock and Soil Mechanics,37Supp.1):145-150.

Jiang QuanFeng XiatingSu Guoshaoal et2007.

Intelligent back analysis of rock mass parameters for large underground caverns under high earth stress based on EDZ and increment displacement

[J].Chinese Journal of Rock Mechanics and Engineering,(Supp.1):2654-2662.

Jing HongwenFu GuobinGuo Zhihong1999.

Measurement and analysis of influential factors of broken zone of deep roadways and study on its control technique

[J].Chinese Journal of Rock Mechanics and Engineering,(1):3-5.

Li WeiliWang LeiChang Jucai2011.

Calculation and site measurement of surrounding rock released circle base on Hoek-Brown criterion

[J].Coal Engineering,(2):97-99.

Liu GangXiao YongzhuoZhu Junfual et2021.

Overview and prospect on theoretical calculation method of broken rock zone

[J].Journal of China Coal Society,461):46-56.

Ma Rongtian2006.

Experimental study on the thickness of surrounding rock loose zone of roadway

[J].Railway Engineering,(11):76-80.

Ma Wentao2007.

A predicative study of loosening zones around roadways with least square support vector machines method with optimized parameters

[J].Rock and Soil Mechanics,28Supp.1):460-464.

Martini C DRead R SMartino J B1997.

Observations of brittle failure around a circular test tunnel

[J].International Journal of Rock Mechanics and Mining Sciences,347):1065-1073.

[本文引用: 1]

Martino J BChandler N A2004.

Excavation-induced damage studies at the Underground Research Laboratory

[J].International Journal of Rock Mechanics and Mining Sciences,418):1413-1426.

[本文引用: 1]

Meng QingbinYanqing MenYang Yimingal et2010.

Roadway surrounding rock loose circle supporting theory and testing technology

[J].China Mine Engineering,393):47-51.

Read R S2004.

20 years of excavation response studies at AECL’s Underground Research Laboratory

[J].International Journal of Rock Mechanics and Mining Sciences,418):1251-1275.

[本文引用: 1]

Sun XikuiChang QingliangShi Xianyuanal et2016.

Thickness measurement and distribution law of loose rings of surrounding rock in large cross section semicircle arch seam gateway

[J].Coal Science and Technology,4411):1-6.

Walton GLato MAnschütz Hal et2015.

Non-invasive detection of fractures,fracture zones,and rock damage in a hard rock excavation—Experience from the Äspö Hard Rock Laboratory in Sweden

[J].Engineering Geology,196210-221.

[本文引用: 1]

Wang S FLi X BYao J Ral et2019.

Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock

[J].International Journal of Rock Mechanics and Mining Sciences,122104063.

[本文引用: 1]

Wu QingxingChen JieChen Suxia2012.

Sensibility analysis of underground excavation stability based on the Hoek-Brown strength criterion

[J].Science Technology and Engineering,1221):5371-53735378.

Wu TaoDai JunDu Meilial et2015.

Surrounding rock loosing circle test based on acoustic test technology

[J].Safety in Coal Mines,461):169-172.

Xu Guo’anJing Hongwen2005.

Study on intelligent prediction of broken rock zone thickness of coal mine roadways

[J].Journal of China University of Mining & Technology,(2):23-26.

Zhao GuoyanLiang WeizhangWang Shaofengal et2016.

Prediction model for extent of excavation damaged zone around roadway based on dimensional analysis

[J].Rock and Soil Mechanics,37Supp.2):273-278300.

高玮郑颖人2002.

巷道围岩松动圈预测的进化神经网络法

[J].岩石力学与工程学报,(5):658-661.

[本文引用: 1]

胡军王凯凯夏治国2014.

分层鱼群优化支持向量机预测巷道围岩松动圈厚度

[J].金属矿山,4311):31-34.

[本文引用: 1]

黄锋朱合华李秋实2016.

隧道围岩松动圈的现场测试与理论分析

[J].岩土力学,37增1):145-150.

[本文引用: 2]

江权冯夏庭苏国韶2007.

基于松动圈—位移增量监测信息的高地应力下洞室群岩体力学参数的智能反分析

[J].岩石力学与工程学报,(增1):2654-2662.

[本文引用: 1]

靖洪文付国彬郭志宏1999.

深井巷道围岩松动圈影响因素实测分析及控制技术研究

[J].岩石力学与工程学报,(1):3-5.

[本文引用: 1]

李伟利王磊常聚才2011.

基于Hoek-Brown准则的围岩松动圈计算及现场测试

[J].煤炭工程,(2):97-99.

[本文引用: 1]

刘刚肖勇卓朱俊福2021.

围岩松动圈理论计算方法的评述与展望

[J].煤炭学报,461):46-56.

[本文引用: 1]

马荣田2006.

巷道围岩松动区厚度的试验研究

[J].铁道建筑,(11):76-80.

[本文引用: 1]

马文涛2007.

参数优化LSSVM的巷道围岩松动圈预测研究

[J].岩土力学,28增1):460-464.

[本文引用: 1]

孟庆彬门燕青杨以明2010.

巷道围岩松动圈支护理论及测试技术

[J].中国矿山工程,393):47-51.

[本文引用: 1]

孙希奎常庆粮施现院2016.

大断面半圆拱煤巷围岩松动圈厚度测定及分布规律

[J].煤炭科学技术,4411):1-6.

[本文引用: 1]

吴清星陈洁陈素侠2012.

基于Hoek-Brown强度准则的洞室稳定影响分析

[J].科学技术与工程,1221):5371-53735378.

[本文引用: 1]

吴涛戴俊杜美利2015.

基于声波法测试技术的巷道围岩松动圈测定

[J].煤矿安全,461):169-172.

[本文引用: 1]

许国安靖洪文2005.

煤矿巷道围岩松动圈智能预测研究

[J].中国矿业大学学报,(2):23-26.

[本文引用: 1]

赵国彦梁伟章王少锋2016.

基于量纲分析的巷道围岩松动圈预测模型

[J].岩土力学,37增2):273-278300.

[本文引用: 1]

/