Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (1): 46-53.doi: 10.11872/j.issn.1005-2518.2022.01.102
• Mining Technology and Mine Management • Previous Articles Next Articles
Feng GAO1(),Haoquan AI1(),Yaodong LIANG2,Zengwu LUO2,Xin XIONG1,Keping ZHOU1,Gen YANG1
CLC Number:
Chen Yincong,2017.Optimization Design Method and Application of Filling Material Proportion Based on Neural Network and Genetic Algorithm[D].Kunming:Kunming University of Science and Technology. | |
Deb K, Pratap A, Agarwal S, al et,2002.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,6(2):182-197. | |
Fu H C, Li P,2019.A multi-objective optimization model based on non-dominated sorting genetic algorithm[J].Internatio-nal Journal of Simulation Modeling,18(3):510-520. | |
Hu N, Li C H, Liu Y, al et,2021.Fuzzy mathematics comprehensive forecasting analysis of metal mine rockburst based on multiple criteriahere[J].IOP Conference Series:Earth and Environmental Science,632(2):022080. | |
Ju Jianhua, Qiang Haiyang,2017.The trend and direction of green development of the mining industry in China[J].China Mining Magazine,26(2):7-12. | |
Li Xibing, Fan Yun, Lan Ming, al et,2015.Evaluation of phosphogypsum filling water quality using game theory and matter-element analysis theory[J].Science & Technology Review,33(15):22-26. | |
Li Yifan, Zhang Jianming, Deng Fei, al et,2005.Experimental study on strength characteristics of tailings cement backfilling at deep-seated mined-out area[J].Rock and Soil Mechanics,26(6):865-868. | |
Liu Li, Xia Yufeng, Ni Wenbin,2020.Local energy supply ratio optimization method based on particle swarm optimization[J].Electronic Design Engineering,28(9):179-183. | |
Liu W, Luo F M, Liu Y H, al et,2019.Optimal siting and sizing of distributed generation based on improved nondominated sorting genetic algorithm II[J].Processes,7(12):955. | |
Qi C C, Fourie A, Chen Q S, al et,2018.A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill[J].Journal of Cleaner Production,183:566-578. | |
Ren Sida,2019.Research on Green Development of China’s Mining Economy[D].Wuhan:China University of Geosciences. | |
Shi Xiaomeng, Liu Baoguo, Xiao Jie,2015.A method for determining the ratio of similar materials with cement and plaster as bonding agents[J].Rock and Soil Mechanics,36(5):1357-1362. | |
Wang Xiaotian, Wang Hongjiang,2020.Research on dual-index quality evaluation method of filling proportion based on fuzzy mathematics[J].Mining Research and Development,40(9):60-65. | |
Wu Hao, Zhao Guoyan, Chen Ying, al et,2019.Optimization of mix proportioning of mine filling materials using RSM-DF experiments design method[J].Journal of Basic Science and Engineering,27(2):453-461. | |
Xiao Wenfeng, Chen Jianhong, Chen Yi, al et,2019.Optimization of multi-objective filling slurry ratio based on neural network and genetic algorithm[J].Gold Science and Technology,27(4):581-588. | |
Yin Shenghua, Hao Shuo, Zou Long, al et,2020.Research on strength regression and slurry optimization of cemented backfill based on response surface method[J].Journal of Central South University(Science and Technology),51(6):1595-1605. | |
Zhai Yuyao, Shi Xianjun, Yang Shuai, al et,2021.Multi-objective test optimization selection based on NSGA-Ⅱ under unreliable test conditions[J].Journal of Beijing University of Aeronautics and Astronautics,47(4):792-801. | |
Zhang Guosheng, Chen Yanting, Hu Yajun, al et,2020.Resear-ch on mixing proportions of a new backfilling cementitious material based on artificial intelligence neural network[J].Mining Research and Development,40(9):143-148. | |
Zhang Qinli, Li Xieping, Yang Wei,2013.Optimization of filling slurry ratio in a mine based on back-propagation neural network[J].Journal of Central South University(Science and Technology),44(7):2867-2874. | |
Zhang Shengyou, Zhang Wei, Li Jinxin,2020.Strength influ-ence analysis of slag-cement-unclassified tailings cemented filling based on stepwise regression analysis[J].Bulletin of the Chinese Ceramic Society,39(12):3866-3873,3880. | |
Zhang Xiuxiang, Qiao Dengpan,2015.Simulation and experiment of pipeline transportation of high density filling slurry with coarse aggregates[J].The Chinese Journal of Nonferrous Metals,25(1):258-266. | |
Zhang Z W, Tian R L, Zhang X L, al et,2021.A novel butterfly-shaped auxetic structure with negative Poisson’s ratio and enhanced stiffness[J].Journal of Materials Science,56(25):14139-14156. | |
陈寅聪,2017.基于神经网络和遗传算法的充填料配比优化设计方法与应用[D].昆明:昆明理工大学. | |
鞠建华,强海洋,2017.中国矿业绿色发展的趋势和方向[J].中国矿业,26(2):7-12. | |
李夕兵,范昀,兰明,等,2015.基于博弈论的磷石膏充填水质物元评价[J].科技导报,33(15):22-26. | |
李一帆,张建明,邓飞,等,2005.深部采空区尾砂胶结充填体强度特性试验研究[J].岩土力学,26(6):865-868. | |
刘莉,夏宇峰,倪文斌,2020.基于粒子群算法的局域供能配比优化方法[J].电子设计工程,28(9):179-183. | |
任思达,2019.中国矿业经济绿色发展研究[D].武汉:中国地质大学. | |
史小萌,刘保国,肖杰,2015.水泥和石膏胶结相似材料配比的确定方法[J].岩土力学,36(5):1357-1362. | |
王筱添,王洪江,2020.基于模糊数学的双指标充填配比质量评价方法研究[J].矿业研究与开发,40(9):60-65. | |
吴浩,赵国彦,陈英,等,2019.基于RSM-DF的矿山充填材料配比优化[J].应用基础与工程科学学报,27(2):453-461. | |
肖文丰,陈建宏,陈毅,等,2019.基于神经网络与遗传算法的多目标充填料浆配比优化[J].黄金科学技术,27(4):581-588. | |
尹升华,郝硕,邹龙,等,2020.基于RSM的胶结充填体强度回归及料浆寻优研究[J].中南大学学报(自然科学版),51(6):1595-1605. | |
翟禹尧,史贤俊,杨帅,等,2021.不可靠测试条件下基于NSGA-Ⅱ的多目标测试优化选择[J].北京航空航天大学学报,47(4):792-801. | |
张国胜,陈彦亭,胡亚军,等,2020.基于人工智能神经网络新型充填胶凝材料配比研究[J].矿业研究与开发,40(9):143-148. | |
张钦礼,李谢平,杨伟,2013.基于BP网络的某矿山充填料浆配比优化[J].中南大学学报(自然科学版),44(7):2867-2874. | |
张盛友,孙伟,李金鑫,2020.基于逐步回归分析法的炉渣—水泥—全尾砂胶结充填体强度影响分析[J].硅酸盐通报,39(12):3866-3873,3880. | |
张修香,乔登攀,2015.粗骨料高浓度充填料浆的管道输送模拟及试验[J].中国有色金属学报,25(1):258-266. |
[1] | Deyun ZHONG, Yulong LIU, Liguan WANG. Optimization of Fan Selection for Multi-stage Fan Station Ventilation System in Mines [J]. Gold Science and Technology, 2024, 32(4): 666-674. |
[2] | Yunmei XU, Liwei YUAN, Haonan LONG. Sensitivity Analysis of Stability Influencing Factors of Dry Heap Tailings Reservoir [J]. Gold Science and Technology, 2023, 31(6): 1014-1022. |
[3] | Shuang HUANG, Mingtao JIA, Fang LU. Optimization Model of Underground Stope Working Plan Based on Heuristic Genetic Algorithm [J]. Gold Science and Technology, 2023, 31(4): 669-679. |
[4] | Guangxu RONG, Zongyang LI. Application of CNN-LSTM Model in Slope Reliability Analysis [J]. Gold Science and Technology, 2023, 31(4): 613-623. |
[5] | Yifeng ZHANG,Hongchao LI,Zhiyu ZHANG,Heng LI. Determination of Blasting Parameters for Excavation and Cutting of Small Section Roadways Based on Orthogonal Experiments [J]. Gold Science and Technology, 2023, 31(2): 331-339. |
[6] | Meidao ZHANG,Yunzhang RAO,Wenfeng XU,Wentao WANG. Orthogonal Experiment on Optimization of Filling Ratio of Full Tailings Paste [J]. Gold Science and Technology, 2021, 29(5): 740-748. |
[7] | Jianhua HU,Le PANG,Xueliang WANG,Minghua ZHENG. Optimization of Roadway Support Parameters in Soft Broken Sections Based on Orthogonal Test [J]. Gold Science and Technology, 2020, 28(6): 859-867. |
[8] | Lei ZHANG, Lijie GUO, Wenchen LI. Experimental Study on Preparation of Filling Cementitious Materials Based on Copper-Nickel Smelting Slag [J]. Gold Science and Technology, 2020, 28(5): 669-677. |
[9] | Wenfeng XIAO,Jianhong CHEN,Yi CHEN,Ximei WANG. Optimization of Multi-objective Filling Slurry Ratio Based on Neural Network and Genetic Algorithm [J]. Gold Science and Technology, 2019, 27(4): 581-588. |
[10] | Zhipeng LAN,Xinmin WANG,Qinli ZHANG,Qiusong CHEN. Experiment Research on Magnetized Water’s Effect on Friction Loss of Paste Slurry in Pipeline Transport [J]. Gold Science and Technology, 2018, 26(6): 811-818. |
[11] | TAN Qiren,WANG Liguan,ZHONG Deyun. Application of NSGA-II in Multi-Objective Route Optimization of Under-ground Mine’s Transportation [J]. Gold Science and Technology, 2016, 24(2): 95-100. |
[12] | WANG Xinmin,HU Yibo,WANG Shi,LIU Jixiang,CHEN Yu,BIAN Jiwei. Orthogonal Test of Optimization of Ultrafine Whole-tailings Backfill Materials [J]. Gold Science and Technology, 2015, 23(3): 45-49. |
[13] | XIE Minxiong,LI Zhengyao,SUN Wenbo. Necessity and Comprehensive Assessment of Lean Solution Processing Project [J]. J4, 2010, 18(6): 73-77. |
|