img

Wechat

Adv. Search

J4 ›› 2009, Vol. 17 ›› Issue (5): 24-29.

• article • Previous Articles     Next Articles

Molybdenite Re-Os Age and Other Geological Meaning of Machangqing Porphyry Copper, Molybdenum Deposit

XING Junbing1,2, GUO Xiaodong1,2,QU Wenjun4 ,WANG Zhihua2,LIHanguang3   

  1. 1. China University of Geoscience, Beijing 100083, China;
    2. Gold Geological Institute of CAPF, Langfang 065000, Hebei, China;
    3. N o. 3 General Gold Party of CAPF, Chengdu 610036, Sichuan, China;
    4. National Geological Experiment and Test Center, Beijing 100037, China
  • Received:2009-01-20 Revised:2009-02-23 Online:2009-10-30 Published:2011-09-29

Abstract:

Machangqing alkalite intrusive rock ismultiperiodic and multistage magmatic activity superimposed intrusive composite rock in west of Yunnan. The time limit of magmatic activity is 52 ~29 Ma, the earliest time began at 52Ma,mid time of it is 47~42Ma, and the latter time of it is 37~29Ma. Using ICP-MS testing the age of molybdenite Re-Os isotope of Baoxingchang porphyry copper, molybdenum deposit, get the pattern age is 34.9±0.8~36.0 ±0.5Ma, the average of it is 35.3±0.7Ma, which indicated thatmetallogenic time limit is about 35~36Ma. The result of above tallied with later granite-porphyry (29~37Ma) of Machangqing complex rock, showed thatmineralization mainly related with later magmatic invasive activity. The existing two ore occurrence shape and mineral compound form ofMachangqing copper, molybdenum polymetallic ore deposit belonged to the production of syn-mineralization; the different representation in different space of syn-mineralization, belonged to same mineralization system. Porphyry copper, molybdenum deposit of Jinshajiang-Ailaoshan mineralization beltwas the production of the syn-min-eralization, and mineralization time limit focused in 35~36Ma.

Key words: Re-Os isotope, Molybdenite, Mineralization age, Alkali-rich porphyry, Machangqing, Copper and molybdenum deposit, Yunnan province

CLC Number: 

  • P578.2+91


[1] 杨建琨,唐志国. 云南省新生代浅成侵入斑岩型金矿成矿特征及找矿远景预测:以马厂菁金矿为例
[J]. 北京地质,1996, 8(3): 27-31.

[2] 胡瑞忠,毕献武, Turner G,等. 马厂箐铜矿床黄铁矿流体包裹体He2Ar同位素体系
[J]. 中国科学(D辑), 1997, 27(6): 503-508.

[3] 胡瑞忠,毕献武,邵树勋,等. 云南马厂箐铜矿床氦同位素组成研究
[J]. 科学通报, 1997, 42(14): 1542-1545.

[4] 毕献武,胡瑞忠,叶造军,等. A型花岗岩类与铜成矿关系研究———以马厂箐为例
[J]. 中国科学(D辑), 1999, 29(6): 489-495.

[5] 葛良胜,张晓辉,邹依林,等. 云南马厂箐(铜、钼)金矿床地质特征及成因研究
[J]. 地质与勘探, 2002, 38(5):11-17.

[6] 张玉泉,谢应雯. 三江地区花岗岩类Rb2Sr同位素研究
[J]. 地球化学, 1990, (4): 318-326.

[7] 张玉泉,谢应雯. 哀牢山—金沙江富碱侵入岩年代学和Nd, Sr同位素特征
[J]. 中国科学(D辑), 1997, 27(4):289-293.

[8] 胡祥昭,黄震. 扬子地台西缘富碱花岗斑岩特征及成因探讨
[J]. 大地构造与成矿学, 1997, 21(2): 173-180.

[9] 王江海,尹安, Harrison TM,等. 青藏东缘新生代两类高钾岩浆活动的热年代学研究
[J]. 中国科学(D辑), 2002, 32(7): 529-537.

[10] 梁华英. 青藏高原东南缘斑岩铜矿成岩成矿研究取得新进展
[J]. 矿床地质, 2002, 21(4): 365.

[11] 梁华英,谢应雯,张玉泉. 富钾碱性岩体形成演化对铜矿成矿制约———以马厂箐铜矿为例
[J]. 自然科学进展,2004, 14(1): 116-120.

[12] 彭建堂,毕献武,胡瑞忠,等. 滇西马厂箐斑岩铜(钼)矿床成岩成矿时限的厘定
[J]. 矿物学报, 2005, 25(1):69-74.

[13] 赵淮. 中甸—大理—金平地区与喜马拉雅期斑岩有关的铅—铜—钼—金矿床成矿模式
[J]. 云南地质, 1995, 14(4): 333-341.

[14] 王义文. 金矿床定年方法新进展及铅同位素的定年意义
[J] . 黄金科学技术, 1994, 2(4): 15-23.

[15] 王登红,屈文俊,李志伟,等. 金沙江—红河成矿带斑岩铜钼矿的成矿集中期: Re2Os同位素定年
[J]. 中国科学(D辑), 2004, 34(4): 345-349.

[16] 曾普胜,侯增谦,高永峰,等. 印度—亚洲碰撞带东段喜马拉雅期铜—钼—金矿床Re2Os年龄及成矿作用
[J]. 地质论评, 2006, 52(1): 72-84.

[17] 马鸿文. 论藏东玉龙斑岩铜矿带岩浆侵入时代
[J]. 地球化学, 1989, (3): 210-216.

[18] 唐仁鲤,罗怀松. 西藏玉龙斑岩铜(钼)矿带地质
[M]. 北京:地质出版社, 1993.

[19] 张玉泉,钟孙霖. 藏东玉龙铜矿带含矿斑岩演化与成矿关系
[J]. 西藏地质, 1997, (2): 74-86.

[20] 杜安道,何红蓼. 辉钼矿的铼—锇同位素地质年龄测定方法研究
[J]. 地质学报, 1994, 68(4): 339-347.

[21] 侯增谦,钟大赉,邓万明. 青藏高原东缘斑岩铜钼金成矿带的构造模式
[J]. 中国地质, 2004, 31(1): 1-14.

[22] 侯增谦,莫宣学,高永丰,等. 印度大陆与亚洲大陆早期碰撞过程与动力学模型———来自西藏冈底斯新生代火成岩证据
[J]. 地质学报, 2006, 80(9): 1233-1248.

[23] 侯增谦,杨竹森,徐文艺,等. 青藏高原碰撞造山带:Ⅰ. 主碰撞造山成矿作用
[J]. 矿床地质, 2006, 25(4): 337-358.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!