img

Wechat

Adv. Search

Gold Science and Technology ›› 2024, Vol. 32 ›› Issue (2): 330-344.doi: 10.11872/j.issn.1005-2518.2024.02.166

• Mining Technology and Mine Management • Previous Articles     Next Articles

Optimization of the Construction Parameters of Super-large Section Flat Structure Tunnel

Kuan LIU1(),Guanwang MO2(),Xiang LI2(),Pinghuan SHEN1,Bo WAN1,Jiankun LIU2   

  1. 1.Shanghai Tunnel Engineering Co. , Ltd. , Shanghai 200032, China
    2.School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
  • Received:2023-12-07 Revised:2024-01-24 Online:2024-04-30 Published:2024-05-21
  • Contact: Guanwang MO,Xiang LI E-mail:1833458942@qq.com;mogw@mail2.sysu.edu.cn;lixiang85@mail.sysu.edu.cn

Abstract:

As the demand for transportation increases in China,more and more highway tunnels adopt the form of super-large section.However,there is still a lack of clear guidance for the design and construction of super-large section tunnels with four lanes or more in the current highway tunnel specifications. There is still a need for in-depth research on the section shape,construction methods,and construction mechanics of super-large section tunnels. Existing research indicates that the use of the benching method for excavation construction of super-large section tunnels is feasible. To obtain the optimized schemes for bench length and anchor rod spacing,numerical simulation was performed in this study to investigate seven different scenarios based on the upper and lower bench construction sections of a certain super-large section flat structure tunnel.The scenarios included bench lengths of 30 m,40 m,50 m,and 60 m,as well as anchor rod longitudinal spacings of 1.0 m,1.5 m,and 2.0 m. The distribution patterns of the plastic zone in the surrounding rock mass,the stress of the surrounding rock,and the deformation of the surrounding rock were analyzed.The study results indicate that the overall maximum principal stress around the tunnel shows a trend of “arch foot>arch waist>arch crown”.An increase in bench length or anchor rod spacing leads to a significant increase in the maximum principal stress at the arch crown. Overall,the settlement and horizontal convergence values of the tunnel arch crowns increase with the increase in bench length. An increase in anchor rod spacing requires other support structures in the initial support to exert stronger control over surrounding rock deformation,potentially leading to the destruction of the support structure. Based on the numerical results and on-site monitoring data,considering factors such as construction efficiency and rock stability,the optimized scheme with a bench length of 50 m and an anchor rod spacing of 1 m was applied in the construction site.The results of this research has high reference value for the optimal selection of excavation and support parameters for super-large section flat structure tunnels.

Key words: super-large section tunnel, highway tunnel, numerical simulation, bench cut method, bench length, longitudinal distance of anchor bolt

CLC Number: 

  • U455.4

Fig.1

Overview of the location of the tunnel engineering"

Fig.2

Tunnel topographic plane and surrounding rock profile diagram"

Fig.3

Numerical model of grade Ⅲ surrounding rock section of tunnel"

Table 1

Parameters of surrounding rock of tunnel"

围岩参数数值围岩参数数值
重度/(kN·m-32 600内摩擦角/(°)40
弹性模量/GPa6黏聚力/MPa0.1
泊松比0.3抗拉强度/MPa1

Fig.4

Schematic diagram of complete initial support"

Table 2

Initial support parameters"

支护类型重度/(kN·m-3弹性模量/GPa泊松比
砂浆锚杆7 8502060.25
钢拱架7 8502060.25
喷射混凝土2 400280.20

Fig.4

Schematic diagram of monitoring points on the cross-section of the tunnel"

Fig.6

Excavation scheme of the tunnel model"

Fig.7

Plastic zone of different bench length models"

Fig.8

Maximum principal stress nephogram of different bench length models (unit:kPa,positive values represent tensile stress)"

Table 3

Maximum principal stress of different surrounding rock parts around the tunnel(kPa)"

围岩部位30 m台阶长度40 m台阶长度50 m台阶长度60 m台阶长度
左洞右洞左洞右洞左洞右洞左洞右洞
拱顶-17.9-8.1-32.4-8.9-45.5-10.9-66.4-10.5
左侧拱腰-313.4-290.6-313.9-291.3-315.0-291.2-320.5-291.4
右侧拱腰-302.3-288.1-303.7-288.3-304.5-287.9-305.9-288.5
左侧拱脚-408.8-422.9-411.5-427.9-414.3-428.3-416.4-430.0
右侧拱脚-392.3-394.4-395.6-396.1-396.6-396.9-398.3-398.7
拱底中点76.982.875.481.774.881.175.480.4

Fig.9

Histogram of maximum principal stress in the left tunnel of different bench length models"

Fig.10

Histogram of maximum principal stress in the right tunnel of different bench length models"

Table 4

Vertical displacement value of monitoring point 1 at different monitoring sections(mm)"

桩号30 m台阶长度40 m台阶长度50 m台阶长度60 m台阶长度
ZK6+790-4.232-4.239-4.246-4.254
ZK6+800-4.274-4.282-4.291-4.301
ZK6+810-4.392-4.399-4.412-4.423
ZK6+820-4.527-4.544-4.552-4.559
ZK6+830-4.637-4.660-4.687-4.683
ZK6+840-4.708-4.724-4.734-4.762
ZK6+850-4.677-4.688-4.691-4.793
YK6+810-3.730-3.745-3.749-3.752
YK6+820-3.766-3.778-3.785-3.790
YK6+830-3.889-3.902-3.908-3.912
YK6+840-4.038-4.051-4.057-4.061
YK6+850-4.167-4.179-4.184-4.186
YK6+860-4.242-4.253-4.257-4.259
YK6+870-4.247-4.256-4.261-4.262

Table 5

Mean values of horizontal convergence of lines 2-3 and 4-5 at different monitoring sections(mm)"

桩号30 m台阶长度40 m台阶长度50 m台阶长度60 m台阶长度
ZK6+7901.0121.0181.0221.023
ZK6+8000.9540.9600.9690.975
ZK6+8100.9740.9881.0031.012
ZK6+8201.0321.0191.0401.045
ZK6+8301.0981.0731.0581.067
ZK6+8401.1441.1401.1051.083
ZK6+8501.3011.2981.2871.193
YK6+8101.1351.1411.1481.149
YK6+8201.1131.1201.1271.129
YK6+8301.1671.1801.1861.189
YK6+8401.2151.2271.2291.229
YK6+8501.2491.2551.2561.258
YK6+8601.2771.2811.2871.288
YK6+8701.4391.4381.4371.448

Fig.11

Vault settlement of different bench length models"

Fig.12

Horizontal convergence values of different bench length models"

Fig.13

Plastic zone of different anchor bolt longitudinal distance models"

Fig.14

Maximum principal stress cloud maps of anchor bolt longitudinal distance models(unit:kPa,positive value represents tensile stress)"

Table 6

Maximum principal stress of different surrounding rock parts around the tunnel(kPa)"

围岩部位1.0 m锚杆纵距1.5 m锚杆纵距2.0 m锚杆纵距
左洞右洞左洞右洞左洞右洞
拱顶-45.5-10.9-44.2-11.7-55.6-13.4
左侧拱腰-315.0-291.2-315.2-290.7-315.5-290.9
右侧拱腰-304.5-287.9-302.3-287.8-302.8-287.9
左侧拱脚-414.3-428.3-413.0-428.6-413.2-428.6
右侧拱脚-396.6-396.9-396.4-397.3-396.9-397.1
拱底中点74.881.174.780.974.881.0

Fig.15

Histogram of maximum principal stress in the left tunnel of different anchor bolt longitudinal distance models"

Fig.16

Histogram of maximum principal stress in the right tunnel of different anchor bolt longitudinal distance models"

Fig.17

Vault settlement of the tunnel under different longitudinal distance of anchor bolt"

Fig.18

Horizontal convergence of tunnel under different longitudinal distance of anchor bolt"

Table 7

Vertical displacement values of monitoring point 1 at different monitoring sections(mm)"

桩号1.0 m锚杆纵距1.5 m锚杆纵距2.0 m锚杆纵距
ZK6+790-4.246-4.256-4.246
ZK6+800-4.291-4.297-4.293
ZK6+810-4.412-4.415-4.414
ZK6+820-4.552-4.555-4.557
ZK6+830-4.687-4.686-4.687
ZK6+840-4.734-4.731-4.726
ZK6+850-4.691-4.692-4.702
YK6+810-3.749-3.749-3.744
YK6+820-3.785-3.778-3.776
YK6+830-3.908-3.908-3.900
YK6+840-4.057-4.059-4.048
YK6+850-4.184-4.181-4.174
YK6+860-4.257-4.254-4.243
YK6+870-4.261-4.261-4.256

Table 8

Mean values of horizontal convergence of lines 2-3 and 4-5 at different monitoring sections(mm)"

桩号1.0 m锚杆纵距1.5 m锚杆纵距2.0 m锚杆纵距
ZK6+7901.0221.0211.022
ZK6+8000.9690.9700.971
ZK6+8101.0031.0051.005
ZK6+8201.0401.0381.038
ZK6+8301.0581.0581.056
ZK6+8401.1051.1111.110
ZK6+8501.2871.2961.298
YK6+8101.1481.1461.146
YK6+8201.1271.1271.127
YK6+8301.1861.1831.180
YK6+8401.2291.2281.228
YK6+8501.2561.2541.257
YK6+8601.2871.2841.284
YK6+8701.4371.4391.444
Cai Dongming,2021. Rationality analysis of initial support parameters of ultra-large section mountain tunnel[J].Journal of Municipal Technology,39(1):17-20.
China First Highway Engineering Co.,Ltd,2020. Technical specifications for construction of highway tunnel: [S].Beijing:China First Highway Engineering Co.,Ltd.
China Merchants Chongqing Communications Technology Research and Design Institute Co.,Ltd,2018. Code for design of highway tunnels: [S].Chongqing:China Merchants Chongqing Communications Technology Research and Design Institute Co.,Ltd.
Guo Xinxin, Wang Bo, Wang Yongqi,et al, 2019. Reasonable value of flat rate in four-lane tunnel with Ⅲ class surrounding rock[J].Chinese Journal of Underground Space and Engineering,15(6):1792-1799.
Li Heyin, Gao Jingming, Li Yanfeng,et al,2024. Research on reasonable construction method of grade Ⅳ surrounding rock for single-hole four-lane super-span highway tunnel[J/OL].Journal of China and Foreign Highway:1-12[2024-01-13]..
Li Lue,2021. Optimization design of inner contour flattening ratio of large-span tunnel [J]. Science and Technology Innovation and Application,11(13):96-98.
Li Xiangbing, Liang Bo, Lu Siyuan,2022. Research on construction parameters of double side heading method considering multiple factors[J].Hazard Control in Tunnelling and Underground Engineering,4(2):39-48.
Lin Kefu, Xiang Yanyong,2021.Research on the application of benching tunneling method construction technology in hig-hway tunnel project—Taking Jialu tunnel as an example[J].Tunnel Construction,41(Supp.1):199-206.
Liu Bo, Han Yanhui,2005. FLAC Principle,Example and Application Guide[M].Beijing:People’s Communications Publishing House.
Liu Daoping,2021. Characteristics and Control of Construction Mechanical Response of Surrounding Rock of Super Large Section Tunnel[D].Beijing:Beijing Jiaotong University.
Ma Lianyou,2021.Formulation of flattening rate of super large section tunnel based on the investigation project[J].Special Structures,38(4):42-46.
Mei Yu, Li Kailei, Lin Zhongchuan,et al,2023.Research on con-struction method optimization of long-span flat four-lane soft rock tunnel[J].Transportation World,(11):153-156,159.
Peng Bo,2021. Research on numerical simulation and optimization of excavation method for flat structure tunnel with super-large section[J].Northern Communications,(10):78-82.
Qiao Gang, Wang Le, Quan Shuyan,et al,2022. Comparative study on construction methods of super large section tunnel[C]//2022 Proceedings of the Academic Exchange Conference on Industrial Construction.Beijing:Industrial Construction.
Qu Haifeng,2009. An overview on construction and research of super-large cross-section tunnels with low height-span ratios[J].Tunnel Construction,29(2):166-171.
Qu Huisen,2021. Research on Construction Mechanical Behavior of Highway Tunnel with Super Large Cross Section[D].Beijing:Beijing Jiaotong University.
Ran Longzhou,2021.Discussion on construction method of shallow buried super long span highway tunnel[J].Shanxi Architecture,47(14):145-147.
Wang Feng, Zhang Yangyu, Tao Jiaqing,et al,2024. Research on construction parameters of half step CD method for slotting the side walls of large span soft rock tunnel[J/OL].Railway Standard Design:1-11[2024-01-13]..
Wang Xiaosuo,2019.Study on Excavation Method and Cons-truction Parameters of Super-Large Section Highway Tun-nel of Grade Ⅳ Surrounding Rock[D].Beijing:Beijing Jiaotong University.
Zhang Junru, Wu Jie, Yan Congwen,et al,2020.Construction technology of super-large section of highway tunnels with four or more lanes in China[J].China Journal of Highway and Transport,33(1):14-31.
Zhao Wei, Shi Yalong,2020.Numerical simulation analysis of construction mechanical behavior of shallow-buried bias tunnel with large cross section[J].Shanxi Architecture,46(4):122-124.
蔡东明,2021.超大断面山岭隧道初期支护参数合理性分析[J].市政技术,39(1):17-20.
郭新新,汪波,王永琪,等,2019.Ⅲ级围岩四车道隧道扁平率的合理取值[J].地下空间与工程学报,15(6):1792-1799.
黎略,2021.大跨度隧道内轮廓扁平率优化设计[J].科技创新与应用,11(13):96-98.
李合银,高景明,李炎峰,等,2024.单洞四车道超大跨度公路隧道Ⅳ级围岩合理施工方法研究[J/OL].中外公路:1-12[2024-01-13]..
李相兵,梁波,鲁思源,2022.考虑多因素影响的双侧壁导坑法施工参数研究[J].隧道与地下工程灾害防治,4(2):39-48.
林可夫,项彦勇,2021.深埋富水岩体隧道三台阶法施工数值模拟和参数优化——以正盘台隧道工程为例[J].隧道建设,41(增1):199-206.
刘波,韩彦辉,2005. FLAC原理、实例与应用指南[M].北京:人民交通出版社.
刘道平,2021. 超大断面隧道围岩施工力学响应特征及控制[D].北京:北京交通大学.
马连友,2021.基于调研工程对隧道超大断面扁平率的拟定[J].特种结构,38(4):42-46.
梅宇,李凯雷,林中川,等,2023.大跨度扁平四车道软岩隧道施工工法优化研究[J].交通世界,(11):153-156,159.
彭波,2021.超大断面扁平结构隧道开挖方法数值模拟及优化研究[J].北方交通,(10):78-82.
乔钢,王乐,全树言,等,2022.超大断面隧道施工工法对比研究[C]//2022年工业建筑学术交流会论文集.北京:工业建筑杂志社.
曲海锋,2009.扁平特大断面隧道修筑及研究概述[J].隧道建设,29(2):166-171.
屈慧森,2021. 超大断面公路隧道施工力学行为研究[D].北京:北京交通大学.
冉龙洲,2021.浅埋超大跨度公路隧道施工工法探讨[J].山西建筑,47(14):145-147.
王峰,张洋语,陶家清,等,2024.大跨软岩隧道边墙开槽半步CD法施工参数研究[J/OL].铁道标准设 计:1-11[2024-01-13]..
王小锁,2019. Ⅳ级围岩超大断面公路隧道开挖方法与施工参数研究[D].北京:北京交通大学.
张俊儒,吴洁,严丛文,等,2020.中国四车道及以上超大断面公路隧道修建技术的发展[J].中国公路学报, 33(1):14-31.
招商局重庆交通科研设计院有限公司,2018. 公路隧道设计规范: [S].重庆:招商局重庆交通科研设计院有限公司.
赵卫,师亚龙,2020.浅埋偏压大断面暗挖隧道施工力学行为数值模拟分析[J].山西建筑,46(4):122-124.
中交一公局集团有限公司,2020. 公路隧道施工技术规范: [S].北京:中交一公局集团有限公司.
[1] Xiangrui HE, Xianyang QIU, Xiuzhi SHI, Xiaoyuan LI, Wei ZHI, Jun LIU, Yuanlai WANG. Study on the Movement Law of Overlying Strata in Underground Mining with Nonlinear Elastic Foundation Beam [J]. Gold Science and Technology, 2024, 32(4): 640-653.
[2] Yunlin YU, Kepeng HOU, Bajiu YANG, Yong CHENG, Taihong LU, Nannan ZHANG. Study on Pillar Mining Scheme of Gaofengshan Ore Section in Yunxi [J]. Gold Science and Technology, 2024, 32(3): 445-457.
[3] Bo LI, Chen WEN, Xiuzhi SHI. Optimization of Stope Sidewall Controlled Blasting Parameters for High-Stress Fan-Shaped Medium-Depth Hole [J]. Gold Science and Technology, 2024, 32(3): 511-522.
[4] Kaibin WANG, Qin LIU, Hongtao WANG. Study on the Load Transfer Characteristics and Influence Factors of Anchora-ge Segment of Pressure-type Anchor Cable [J]. Gold Science and Technology, 2024, 32(1): 123-131.
[5] Zefeng XU, Xiuzhi SHI, Rendong HUANG, Wenzhi DING, Xin CHEN. Study on Filling Pipeline Optimization Based on Full Pipe Transportation [J]. Gold Science and Technology, 2024, 32(1): 160-169.
[6] Jielin LI, Yiliang LIU, Yupu WANG, Zaili LI, Keping ZHOU, Chunlong CHENG. Influence of Forced-Exhaust Mixed Ventilation Parameters on the Cooling Effect of Artificial Cooling in High-temperature Blind Roadway [J]. Gold Science and Technology, 2024, 32(1): 63-74.
[7] Honglu FEI, Hainan JI, Jie SHAN. Optimization and Comparative Experimental Study of Charge Structure of Water Medium Interval on Open-air Step [J]. Gold Science and Technology, 2023, 31(6): 930-943.
[8] Wenfa SHAN, Xiancheng MAO, Zhankun LIU, Hao DENG, Jin CHEN, Wei ZHANG, Haizheng WANG, Xin YANG. Numerical Simulation of Metallogenic Processes of Dayingezhuang Gold Deposit in Jiaodong Peninsula and Its Prospecting Significance [J]. Gold Science and Technology, 2023, 31(5): 707-720.
[9] Yu ZHANG, Wenji WANG, Jiaqi SUN, Yonggang XIAO. Fracture Performances of Bedding Structure Slate Under Dynamic Loading [J]. Gold Science and Technology, 2023, 31(5): 803-810.
[10] Yanan ZHAO, Yihang ZHAO, Zhongming JIANG, Hongmin ZHAO. Preliminary Study on Static and Dynamic Stability of Canister for High-level Radioactive Nuclear Waste Disposal Based on Discrete Element Method [J]. Gold Science and Technology, 2023, 31(4): 592-604.
[11] Heng MA,Jiayi GAO,Shihu LI,Ke GAO. Influence of Jet Angle of Twin Parallel Air Curtains on the Tunnel Airflow [J]. Gold Science and Technology, 2022, 30(5): 743-752.
[12] Duiming GUO,Guoqing LI,Jie HOU,Nailian HU. Optimization of Local Ventilation Parameters of Deep Mine Excavation Roadway Based on FLUENT [J]. Gold Science and Technology, 2022, 30(5): 753-763.
[13] Zhanxing ZHOU,Kewei LIU,Xudong LI,Xiaohui HUANG,Sizhou MA. Numerical Simulation of Dynamic Response of Tunnel Lining Under Oil Tank Explosion [J]. Gold Science and Technology, 2022, 30(4): 612-622.
[14] Lingzhi ZHONG,Xiancheng MAO,Zhankun LIU,Keyan XIAO,Chuntan WANG,Wu CHEN. Ore-controlling Effect of Structural Geometry Features in the Sanshandao Gold Belt,Jiaodong Peninsula,China: Insights from Numerical Simulation [J]. Gold Science and Technology, 2022, 30(3): 352-365.
[15] Weihua WANG,Yang LIU,Liwei ZHANG,Henggen ZHANG. Numerical Simulation of Homogeneous Rock Mass Damage Caused by Two-hole Simultaneous Blasting Based on RHT Model [J]. Gold Science and Technology, 2022, 30(3): 414-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!