img

Wechat

Adv. Search

Gold Science and Technology ›› 2024, Vol. 32 ›› Issue (1): 100-108.doi: 10.11872/j.issn.1005-2518.2024.01.130

• Mining Technology and Mine Management • Previous Articles     Next Articles

Evaluation of Safety Control Capacity of Metal Mining Enterprises Based on CWM-TOPSIS Model

Xiao LI1(),Jun XU1,Chengxu ZHANG2,Lailun SUI2(),Zaiyong WANG3   

  1. 1.School of Management Engineering, Nanjing University of Information Science and Technology, Nanjing 210000, Jiangsu, China
    2.No. 6 Geological Brigade of Shandong Provincial Bureau of Geology and Mineral Resources, Yantai 264000, Shandong, China
    3.Key Laboratory of In-Situ Property Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Received:2023-09-11 Revised:2024-01-12 Online:2024-02-29 Published:2024-03-22
  • Contact: Lailun SUI E-mail:202211630001@nuist.edu.cn;414442702@qq.com

Abstract:

The metal mine is an important industry type for China’s social-economic development in China.In recent years,mines have been constructing safety digitalization,and improving the level of mine safety management and control capacity is the key aspect of achieving enterprise transformation and high-quality development.The Internet of Things,cloud computing,roboticized equipment,and modern mining deve-lopment,safety production and other technologies are deeply integrated,gradually forming an intelligent security control system that integrates situational awareness,dynamic prediction,and intelligent warning.During this process,metal mining enterprises still face problems such as lack of safety management,unclear decision-making targets,and frequent safety accidents.Therefore,during the construction of metal mine safety digi-talization,a new evaluation index system for metal mine safety control capacity was proposed.The CWM method was used to comprehensively analyze the influencing factors of the safety control capacity of metal mining enterprises,and the CWM-TOPSIS method was used to construct an evaluation model for the safety control capacity of metal mines.The safety management and control capacity of five gold enterprises in Shandong Province was evaluated.AHP-TOSIS and EWM-TOPSIS model were used to verify the CWM-TOSIS model.The results show that the order of the most significant indicators affecting the safety management and control capacity of metal mining enterprises is emergency response ability (x11) > safety technology level (x10) > risk intelligent early warning ability (x13),and Enterprise 1 has the highest safety control capacity,which is consistent with the actual situation.The model and method can be adapted to the safety control capacity evaluation of metal mines.

Key words: metal mining enterprises, safety control capacity, entropy weight method, combination weighting, TOPSIS method, approximate ideal solution

CLC Number: 

  • TD76

Fig.1

Index system for evaluation of safety capacity capability of metal mining enterprises"

Table 1

Scale definition of judgment matrix"

标度含义
12个要素相比,同样重要
32个要素相比,后者比前者稍重要
52个要素相比,后者比前者明显重要
72个要素相比,后者比前者强烈重要
92个要素相比,后者比前者极端重要
2,4,6,8上述相邻判断的中间状态
倒数2个要素相比,后者比前者的重要性标度

Table 2

Results of weight calculation and consistency test of judgment matrix S"

Sx1x2x3x4x5x6x7x8x9x10x11x12x13ω1权重排序
x111.36652.63770.84171.08110.21800.43272.61990.23850.22240.24580.22101.74190.046311
x20.731810.27150.97700.48620.20550.29150.32940.36830.24850.21940.37480.54260.021213
x30.37913.682810.39040.28920.55980.54640.21090.49407.26571.10050.52387.76680.08896
x41.18801.02362.561510.22380.35450.24930.63820.31460.20061.68910.20420.35780.041412
x50.92492.05673.45834.468710.63310.57830.45160.82500.28970.20470.47140.46710.050610
x64.58824.86741.78632.82081.579611.30890.60870.41460.97660.32890.38580.38060.06519
x72.31113.43021.83014.01121.72930.764010.29060.72840.22760.51493.57743.34990.08448
x80.38173.03624.74231.56702.21431.64283.44210.21290.29190.38222.60832.09160.08935
x94.19262.71502.02453.17831.21212.41191.3734.697011.0050.2420.2090.6330.08657
x104.49604.02480.13764.98443.45141.02394.3943.42630.995210.29770.22170.23770.09744
x114.06844.55880.90870.59204.88623.04071.9422.61624.13593.359111.26020.49230.12331
x124.52422.66771.90904.89652.12152.59200.2800.38344.78914.51020.793510.24700.10762
x130.57411.84310.12882.79502.14082.62740.2990.47811.58074.20752.03124.049010.09813

Table 3

Calculation results of each evaluation index"

一级指标二级指标zjω2权重排序

企业安全

管理能力

责任主体落实x10.84720.045513
管理机构建立x20.78940.06279
安全制度建立x30.67120.09794
培训与宣传力度x40.75510.07298

企业员工

安全水平

员工安全意识x50.83320.049611
安全技能水平x60.74080.07726
安全工作执行力x70.83570.048912

企业风险

控制能力

危险源辨识x80.80770.057210
安全隐患排查x90.71370.08525
安全技术水平x100.63810.10772
应急处置能力x110.59370.12091

安全数智化

水平

多维态势感知能力x120.75500.07297
风险智能监测能力x130.65910.10143

Table 4

Comprehensive weight values of each evaluation index"

评价指标3种评价方法综合权重ω*

综合权重

排序

AHP法EWM法CWM法
责任主体落实x10.04630.04550.046112
管理机构建立x20.02120.06270.032113
安全制度建立x30.08890.09790.09125
培训与宣传力度x40.04140.07290.049711
员工安全意识x50.05060.04960.050310
安全技能水平x60.06510.07720.06839
安全工作执行力x70.08440.04890.07518
危险源辨识x80.08930.05720.08097
安全隐患排查x90.08650.08520.08626
安全技术水平x100.09740.10770.10012
应急处置能力x110.12330.12090.12271
多维态势感知能力x120.10760.07290.09854
风险智能监测能力x130.09810.10140.09903

Fig.2

Comparison of comprehensive weight value of each evaluation index by three method"

Table 5

Positive and negative ideal solutions of samples from each metal mining enterprise"

矿山企业正理想解负理想解
企业10.15270.1992
企业20.19170.1701
企业30.23950.1437
企业40.18410.1952
企业50.20930.1662

Table 6

Calculation results of relative closeness degree of each enterprise by three method"

矿山

企业

AHP-

TOPSIS法

EWM-

TOPSIS法

CWM-

TOPSIS法

CWM-TOPSIS法贴进度排序
企业10.56880.55900.56601
企业20.46720.48150.47013
企业30.38910.33500.37505
企业40.52950.47440.51472
企业50.43590.46420.44264

Table 7

Comprehensive rating ranking of the evaluation index system"

矿山企业安全管控能力评分排序
企业18.41541
企业28.27732
企业37.88205
企业48.14083
企业57.96704
Cai Meifeng, Tan Wenhui, Wu Xinghui,et al,2021.Current situation and development strategy of deep intelligent mining in metal mines[J].The Chinses Journal of Nonferrous Metals,31(11):3409-3421.
Chang Xiaocun,2019.Construction and operation evaluation of major disasters prevention and safety guarantee system for coal mining enterprise[J].Journal of Safety Science and Technology,15 (10):140-145.
Ding Baichuan,2017.Features and prevention countermeasures of major disasters occurred in China coal mine[J].Coal Science and Technology,45 (5):109-114.
Gao Zhenxing, Guo Jinping,2020.Research on safety evaluation of tailings pond based on entropy method-catastrophe theory[J].Gold Science and Technology,28 (3):450-456.
Jiang Lan, Zhong Lü, Peng Ya,et al,2021.Evaluation of safety management system effectiveness for airline companies based on combined weights and fuzzy method[J].Journal of Safety and Environment,21 (5):2107-2113.
Li Dongyin, Sun Kaixuan, Wang Shen,et al,2022.Study on safety evaluation of intelligent working face based on extension theory with entropy weight approach[J].Journal of Henan Polytechnic University(Natural Science),41 (3):1-9.
Li Jun, Zhang Bo,2023.Safety evaluation of coal mine comprehensive dust control system based on IFAHP-improved entropy weight method[J].Coal Technology,42 (9):195-199.
Li Junjie, Cheng Wanjing, Liang Mei,et al,2020.Comprehensive evaluation on sustainable development of China’s advanced coal to chemicals industry based on EWM-AHP[J].Chemical Industry and Engineering Progress,39 (4):1329-1338.
Qu Yang, Zhang Xuebo,2021.Evaluation of occupational hazards in coal mine workplaces based on combined empowerment cloud model[J].Coal Engineering,53(10):153-159.
Wang Guofa, Du Yibo, Chen Xiaojing,et al,2023.Development and innovative practice from coal mine mechanization to automation and intelligence:Commemorating the 50th anniversary of the founding of Journal of Mine Automation[J].Journal of Mine Automation,49(6):1-18.
Wang Meng, Shi Xiuzhi, Zhang Shu,2020.Evaluation research on safety guarantee conditions of underground metal mines oriented to optimizing production capacity[J].Gold Science and Technology,28 (5):753-760.
Wang Jianbin, Li Guoqing, Qiang Xingbang,et al,2024.Intelligent analysis system of mine safety risk based on dual prevention system[J].Metal Mine,53(1):99-108.
Wang Shaofeng, Li Xibing,2021.Cutting characteristic and non-explosive mechanized rock-breakage practice of deep hard rock[J].Gold Science and Technology,29(5):629-636.
Wang Yong, Wu Aixiang, Yang Jun,et al,2023.Progress and prospective of the mining key technology for deep metal mines[J].Chinese Journal of Engineering,45(8):1281-1292.
Wu Jianbin, Gu Zhihong, Wang Zheng,et al,2021.Multi-attribute evaluation on lean operation and maintenance of distribution network equipment based on game variable weight cloud model[J].Science Technology and Engineering,21 (27):11615-11623.
Wu Liyun, Yang Yuzhong, Zhang Qiang,2007.TOPSIS method for evaluation on mine ventilation system[J].Journal of China Coal Society,(4):407-410.
Xing Yuanyuan, Zhang Feifei,2021.Risk evaluation of coal spontaneous combustion based on AEM-TOPSIS[J].Coal Engineering,53(11):131-134.
Yang Guoyong, Chen Chao, Gao Shulin,et al,2015.Study on the height of water flowing fractured zone based on analytic hierarchy process and fuzzy clustering analysis method[J].Journal of Mining and Safety Engineering,32 (2):206-212.
Ye Wentao, Cheng Lianhua,2021.Safety input-output efficiency evaluation of coal mining enterprises under high quality development[J].Journal of Xi’an University of Science and Technology,41 (4):700-707.
Yin Bin, Shen Xia, Xiaoming Chuai,2020.Study on assessment of safe behaviors in Shanxi coal enterprises[J].Safety in Coal Mines,51 (6):255-259.
Zhang Jinggang, Wang Qingyan, Zhao Shufeng,2022.Application of HAZOP-LOPA coal mine safety risk assessment method based on Bayesian network[J].Mining Safety and Environmental Protection,49 (1):114-120.
Zhang Xiaodong, Liu Xiangnan, Zhao Zhipeng,et al,2019.Geological disaster hazard assessment in Yanchi County based on AHP[J].Remote Sensing for Natural Resources,31 (3):183-192.
Zhang Yanli,2022.Research on scientific and technological development and safety and environmental issues in metal mines—Comment on “Prospective Research on the Development of Safety and Environmental Science and Technology in Metal Mines in China”[J].Nonferrous Metals Engineering,12 (10):155-156.
Zhang Yuanqiu, Tian Jun, Feng Gengzhong,2015.The evaluation model of emergency material supplying capability based on ANP[J].Chinese Journal of Management,12 (12):1853-1859.
Zou Long,2022.Research on ventilation system optimization in the No.2 mine of Jinchuan based on three-dimensional digital model[J].Mining Research and Development,42(9):152-157.
蔡美峰,谭文辉,吴星辉,等,2021.金属矿山深部智能开采现状及其发展策略[J].中国有色金属学报,31(11):3409-3421.
昌孝存,2019.煤矿企业重大灾害预防与安全保障体系构建与运行评价[J].中国安全生产科学技术,15(10):140-145.
丁百川,2017.我国矿山主要灾害事故特点及防治对策[J].煤炭科学技术,45(5):109-114.
高振兴,郭进平,2020.基于熵值法—突变理论的尾矿库安全评价研究[J].黄金科学技术,28(3):450-456.
姜兰,吕忠,彭亚,等,2021.基于组合权重-Fuzzy的航空公司安全管理体系有效性评估[J].安全与环境学报,21 (5):2107-2113.
李东印,孙凯旋,王伸,等,2022.基于熵权—可拓理论的智能化综采工作面安全评价[J].河南理工大学学报(自然科学版),41 (3):1-9.
李军,张波,2023.基于IFAHP-改进熵权法的煤矿综合防尘体系安全评价[J].煤炭技术, 42(9):195-199.
李俊杰,程婉静,梁媚,等,2020.基于熵权—层次分析法的中国现代煤化工行业可持续发展综合评价[J].化工进展,39(4):1329-1338.
屈扬,张学博,2021.基于组合赋权云模型的矿山作业场所职业危害综合评价[J].煤炭工程,53(10):153-159.
王国法,杜毅博,陈晓晶,等,2023.从煤矿机械化到自动化和智能化的发展与创新实践——纪念《工矿自动化》创刊50周年[J].工矿自动化, 49(6):1-18.
王猛,史秀志,张舒,2020.面向产能优化的地下金属矿山安全保障条件评价研究[J].黄金科学技术,28(5):753-760.
王佳斌,李国清,强兴邦,等,2024.基于双重预防体系的矿山安全风险智能分析系统[J].金属矿山,53(1):99-108.
王少锋,李夕兵,2021. 深部硬岩可切割性及非爆机械化破岩实践[J].黄金科学技术,29(5):629-636.
王勇,吴爱祥,杨军,等,2023.深部金属矿开采关键理论技术进展与展望[J].工程科学学报,45(8):1281-1292.
吴建斌,谷志红,王正,等,2021.基于博弈变权—云模型的配电网设备精益运维多属性评价[J].科学技术与工程,21(27):11615-11623.
吴立云,杨玉中,张强,2007.矿井通风系统评价的TOPSIS方法[J].煤炭学报,(4):407-410.
邢媛媛,张飞飞,2021.基于AEM-TOPSIS的煤炭自燃风险评价研究[J].煤炭工程,53(11):131-134.
杨国勇,陈超,高树林,等,2015.基于层次分析—模糊聚类分析法的导水裂隙带发育高度研究[J].采矿与安全工程学报,32 (2):206-212.
叶文涛,成连华,2021.高质量发展下金属矿山企业安全投入产出效率评价[J].西安科技大学学报,41(4):700-707.
尹斌,申霞,揣小明,2020.山西煤矿企业的行为安全评价研究[J].煤矿安全,51(6):255-259.
张景钢,王清焱,赵淑枫,2022.基于贝叶斯网络的HAZOP-LOPA煤矿安全风险评价方法应用研究[J].矿业安全与环保,49(1):114-120.
张晓东,刘湘南,赵志鹏,等,2019.基于层次分析法的盐池县地质灾害危险性评价[J].国土资源遥感,31(3):183-192.
张艳利,2022.金属矿山的科技发展和安全与环境问题研究——评《我国金属矿山安全与环境科技发展前瞻研究》[J].有色金属工程,12(10):155-156.
张苑秋,田军,冯耕中,2015.基于网络层次分析法的应急物资供应能力评价模型[J].管理学报,12(12):1853-1859.
邹龙,2022.基于三维数字化模型的金川二矿区通风系统优化研究[J].矿业研究与开发,42(9):152-157.
[1] Wei YANG, Bo DENG, Tao LONG, Sha DENG, Mengge XUE, Nan FANG. Comprehensive Evaluation of Green Mine Construction of Gold Mine Based on Effect-Efficiency [J]. Gold Science and Technology, 2023, 31(6): 919-929.
[2] Wei YANG, Mengge XUE, Tao LONG, Sha DENG, Bo DENG, Nan FANG. Comprehensive Evaluation of Green Mine Construction in Gold Industry Based on DPSIR Model [J]. Gold Science and Technology, 2023, 31(4): 635-645.
[3] Minggui ZHENG, Xinyue WANG, Dongming GU, Yanbo ZHANG. Environmental Risk Assessment and Prediction of Mining Investment in Pakistan Under the Background of the Belt and Road [J]. Gold Science and Technology, 2023, 31(4): 646-658.
[4] Xianfeng XU,Pengfei XING,Suihong WANG,Yong WANG. Rock Mass Quality Evaluation and Application Based on Game Theory and G1-EW-TOPSIS Method [J]. Gold Science and Technology, 2022, 30(5): 704-712.
[5] Tingxin WEN,Huanbo SU. Combined Weighting-Extremely Randomized Trees Rockburst Prediction Model Based on MICE_ RF [J]. Gold Science and Technology, 2022, 30(3): 392-403.
[6] Yu TANG,Shaofeng WANG. Analysis on Rock Breakage Characteristic and Its Influence Factors of Conical Pick Under Uniaxial Confining Stress [J]. Gold Science and Technology, 2021, 29(5): 669-679.
[7] Yue JING,Shaofeng WANG,Jintao LU. Thickness Prediction of the Excavation Damage Zone and Non-explosive Mechanized Mining Criterion [J]. Gold Science and Technology, 2021, 29(4): 525-534.
[8] Meng WANG, Xiuzhi SHI, Shu ZHANG. Evaluation Research on Safety Guarantee Conditions of Underground Metal Mines Oriented to Optimizing Production Capacity [J]. Gold Science and Technology, 2020, 28(5): 753-760.
[9] Keping ZHOU, Xiaofeng HOU, Yun LIN. Research on Classification Method of Surrounding Rock Stability Based on Comprehensive Decision Cloud Model [J]. Gold Science and Technology, 2020, 28(3): 372-379.
[10] Guoyan ZHAO,Ju QIU,Yuan ZHAO,Dianfei PEI,Yang LI,Pan WU. Discussion on Evaluation Method of Green Mining in Metal Mines [J]. Gold Science and Technology, 2020, 28(2): 169-175.
[11] Guoyan ZHAO,Pan WU,Xingfu ZHU,Yuan ZHAO,Yang LI,Ju QIU. Priority Evaluation of Green Mining Technology in Sanshandao Gold Mine Based on Grey Correlation Analysis [J]. Gold Science and Technology, 2019, 27(6): 835-843.
[12] Kuang WANG,Xibing LI,Chunde MA,Helong GU. Rock-burst Proneness Prediction Based on Improved RS-TOPSIS Model [J]. Gold Science and Technology, 2019, 27(1): 80-88.
[13] LU Furan, CHEN Jianhong. Rockburst Prediction Method Based on AHP and Entropy Weight TOPSIS Model [J]. Gold Science and Technology, 2018, 26(3): 365-371.
[14] WANG Xinmin,FAN Biao,ZHANG Deming,LI Shuai. Synthetic Judgement for Filling Scheme Optimization Based on AHP and TPOSIS Methods [J]. Gold Science and Technology, 2016, 24(5): 1-6.
[15] WAN Xiaoheng,WANG Xinmin,ZHU Yangya,JIANG Zhiliang,CHEN Qiusong. Optimization of the Stope Structural Parameters Based on Empowerment Combination TOPSIS [J]. Gold Science and Technology, 2014, 22(5): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!