img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (6): 1035-1043.doi: 10.11872/j.issn.1005-2518.2023.06.095

• Mining Technology and Mine Management • Previous Articles    

Experimental Study on the Comprehensive Recovery of Gold,Tungsten and Quartz Sand Form Flotation Tailings of Dulanggou Gold Mine in Sichuan Province

Rongyan ZHAO(),Tian’en LI,Ling ZHANG   

  1. Xi’an Tianzhou Mining Technology Development Co. ,Ltd. ,Xi’an 710199,Shaanxi,China
  • Received:2022-07-19 Revised:2023-06-08 Online:2023-12-31 Published:2024-01-26

Abstract:

The flotation tailings came from Dulanggou gold mine in Sichuan Province,with the particle size of -0.074 mm 27%.The results of chemical analysis show that the grade of Au,WO3 and SiO2 is 0.42×10-6, 0.039%,and 94.01% respectively.The main valuable metal minerals are natural gold,scheelite and pyrite,and the gangue minerals are mainly quartz,mica and feldspar,which belong to the tailings that can be recycled. In order to comprehensively recover the valuable minerals in the flotation tailings of Dulanggou gold mine,according to the density difference between natural gold and gold-bearing minerals(pyrite) and scheelite in the tailings,without grinding,the gravity separation test equipment and process selection,gold-tungsten separation flotation test and beneficiation test of quartz sand recovery from gravity tailings were carried out.Finally,through detailed comparative analysis,the combined process of gravity separation (Nielsen+shaking table)-flotation (gold tungsten separation)-magnetic separation was adopted.The flotation process has got a better classification index.The gold concentrate Au grade is 107.00×10-6 and Au recovery is 2.34%.Tungsten concentrate(WO3 grade) is 52.95% and WO3 recovery is 47.23%.Quartz sand concentrate(SiO2 grade) is 96.32% and SiO2 recovery is 75.68%,and the quartz sand concentrate reaches 2S level.The tailings bene-ficiation process has the advantages of low cost,easy on-site operation and environmental protection.

Key words: tailing comprehensive recovery, gravity separation, gold tungsten separation, quartz sand, scheelite, Nielsen

CLC Number: 

  • TD953

Fig.1

Sand sheet of gravity concentrate"

Table 1

Determination results of scheelite particle size"

粒级/mm粒数/粒粒数比/%累计/%
合计180100.0-
0.280~0.15452.8100.0
0.154~0.1002111.797.2
0.100~0.0743016.785.5
0.074~0.0455430.068.8
0.045~0.0302715.038.8
0.030~0.015158.323.8
0.015~0.0052614.415.5
≤0.00521.11.1

Table 2

Results of gold-tungsten gravity separation test"

试验名称产品名称产率/%品位回收率/%
Au/(×10-6WO3/%AuWO3
单一摇床重选试验精矿0.1410.2611.863.6142.36
分级—摇床重选试验-0.1 mm精10.0614.2517.972.0029.96
+0.1 mm精20.661.990.363.036.62
合计0.723.031.855.0336.58
分级—再磨摇床重选试验-0.1 mm精10.0614.4019.782.4632.22
+0.1 mm精20.474.950.116.191.31
合计0.536.082.478.6533.53
螺旋溜槽—摇床重选试验精矿0.0719.7319.013.6635.28
卧式离心机—摇床重选试验精矿0.1211.996.833.6919.95
悬振锥面选矿机—摇床重选试验精矿0.303.072.312.3217.33
尼尔森—摇床重选试验精矿0.0527.5140.993.1246.45

Table 3

Results of Nielsen gravity G conditions test"

重力

G

产品名称产率/%品位回收率/%
Au/(×10-6WO3/%AuWO3
60精矿0.742.972.6575.3749.10
尾矿99.260.390.02194.6350.90
现场尾矿100.000.410.040100.00100.00
90精矿0.743.922.6357.1749.03
尾矿99.260.380.02192.8350.97
现场尾矿100.000.410.040100.00100.00
120精矿0.763.782.6037.2350.51
尾矿99.240.370.01992.7749.49
现场尾矿100.000.400.039100.00100.00

Fig.2

Flowsheet of gold-tungsten separation test"

Table 4

Results of gold-tungsten separation of fineness test"

-0.074 mm占比/%产品名称作业产率/%品位作业回收率/%对矿回收率/%
Au/(×10-6WO3/%AuWO3AuWO3
51(不磨矿)金精矿10.11115.1130.65140.456.991.263.25
钨精矿89.8919.0645.85259.5593.011.8643.20
重选精矿100.0028.7744.315100.00100.003.1246.45
65金精矿14.38112.009.94056.513.221.761.50
钨精矿85.6214.4850.12243.4996.781.3644.96
重选精矿100.0028.5044.345100.00100.003.1246.45
75金精矿19.73105.0012.49071.375.482.232.55
钨精矿80.2710.3552.91328.6394.520.8943.91
重选精矿100.0029.0344.938100.00100.003.1246.45
85金精矿24.9890.1114.91078.768.552.463.97
钨精矿75.028.0953.13021.2491.450.6642.48
重选精矿100.0028.5843.583100.00100.003.1246.45

Table 5

Results of H2SO4 dosage test"

H2SO4 用量/(g·t-1pH值产品名称作业产率/%品位作业回收率/%对矿回收率/%
Au/(×10-6WO3/%AuWO3AuWO3
0.255~6金精矿21.05101.2517.5573.918.482.313.94
钨精矿78.959.5350.5226.0991.520.8142.51
重选精矿100.0028.8443.58100.00100.003.1246.45
0.355~6金精矿19.73105.0012.4971.375.482.232.55
钨精矿80.2710.3552.9128.6394.520.8943.91
重选精矿100.0029.0344.94100.00100.003.1246.45
0.454~5金精矿16.33118.6011.3366.654.172.081.94
钨精矿83.6711.5850.8833.3595.831.0444.51
重选精矿100.0029.0644.42100.00100.003.1246.45

Table 6

Results of collector dosage test"

丁基黄药+丁铵黑药用量/(g·t-1产品名称作业产率/%品位作业回收率/%对矿回收率/%
Au/(×10-6WO3/%AuWO3AuWO3
0.50+0.50金精矿15.66118.6410.2563.803.591.991.67
钨精矿84.3412.5051.1536.2096.411.1344.98
重选精矿100.0029.1244.75100.00100.003.1246.45
0.65+0.65金精矿19.26108.4511.2571.294.862.222.27
钨精矿80.7410.4252.5728.7195.140.9044.18
重选精矿100.0029.3044.61100.00100.003.1246.45
0.75+0.75金精矿20.00105.6012.1172.135.492.252.55
钨精矿80.0010.2052.0927.8794.510.8743.90
重选精矿100.0029.2844.09100.00100.003.1246.45

Fig.3

Flowsheet of shaker gravity separation-medium intensity magnetic of comprehensive tailings test"

Table 7

Results of shaker gravity separation-medium intensity magnetic of comprehensive tailings test"

产品名称产率/%SiO2品位/%SiO2回收率/%
精矿0.2766.170.19
重矿物3.4686.793.19
磁性物2.2255.551.31
石英精矿70.9696.3272.68
尾矿23.0992.1322.63
现场尾矿100.0094.03100.00

Table 8

Parameters of gravity separation process"

工艺流程参数名称数值
摇床作业坡度/度2.1
冲次/(次·min-1300
冲程/mm12
冲洗水/(L·min-19.60
尼尔森作业浓度/%35
G90
水量/(L·min-13.0

Table 9

Results of final mineral dressing test"

产品名称

产率

/%

品位回收率/%
Au/(×10-6WO3/%SiO2/%AuWO3SiO2
金精矿0.009107.0012.51024.662.342.870.00
钨精矿0.03510.3352.95021.030.8847.230.01
摇床中矿0.2261.490.34375.000.821.980.18
重矿物3.4601.290.10086.7910.868.823.19
磁性物2.2200.680.04355.553.672.431.31
石英精矿70.9600.390.01896.3267.3732.5572.68
尾矿23.0900.250.00792.1314.064.1222.63
现场尾矿100.000.410.03994.03100.00100.00100.00

Fig.4

Flowsheet of final mineral dressing test"

Antonelli P M, Fraser L H, Gardner W C,et al,2018.Long term carbon sequestration potential of biosolids-amended copper and molybdenum mine tailings following mine site reclamation[J].Ecological Engineering,117:38-49.
Chen Dujuan, Wang Zhifeng, Wang Tingxia,2021.Experimental study on comprehensive recovery and beneficiation of tailings[J].Multipurpose Utilization of Mineral Resources,(1):104-108.
Dai Xinyu, Wang Changliang, Dong Xiaoji,et al,2011.Gold recovery from gold-copper ore by Knelson concentrator[J].Nonferrous Metals(Mineral Processing Section),(Supp.1):143-145.
Dong L Y, Wei Q, Qin W Q,et al,2021.Effect of iron ions as assistant depressant of citric acid on the flotation separation of scheelite from calcite[J].Chemical Engineering Science,241:116720.
Givemore S, Bern K, Altun E M,2015.A hybrid evolutionary performance improvement procedure for optimization of continuous variable discharge concentrators[J].Separation and Purification Technology,145:130-138.
Han H, Hu Y, Sun W,et al,2018.Novel catalysis mechanisms of benzohydroxamic acid adsorption by lead ions and changes in the surface of scheelite particles[J].Minerals Engineering,119:11-22.
Han Yuexin, Sun Yongsheng, Li Yanjun,et al,2015.New development on mineral processing technology of iron ore resources in China[J].Metal Mine,44(2):1-11.
He Guichun, Xiao Cehuan,2015.Experimental study on flotation of wolframite tailings in a Jiangxi tungsten mine[J].Nonferrous Metals Science and Engineering,6(6):82-87.
Huang Lijuan, Jiang Yaxiong, Zhu Kun,et al,2018.Experimental study on comprehensive recovery of flotation tailings from a gold mine in Yunnan Province[J].Gold,39(1):77-80.
Li H, Liu M X, Liu Q,2018.The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector[J].Minerals Engineering,119:105-115.
Li Yang, Meng Fantao, Wang Peng,2019.Research progress of comprehensive utilization of gold tailings[J].Journal of Shandong University of Technology(Natural Science Edition),33(1):40-44.
Shao Hui,2015.Flotation experiments of a low grade scheelite[J].Metal Mine,44(1):58-61.
Sun Chuanyao,2015.Handbook for Mineral Processing Engineers[M].Beijing:Metallurgical Industry Press.
Wang Qinghua, Zhang Shuguang, Li Jiangshan,2015.Experimental research on silica sand purification by permanent strong magnetic separation and acid leaching[J].Non-Metallic Mines,38(3):52-54.
Xiao Wengong,2017.Beneficiation recovery of low grade scheelite from sulfur tailings[J].China Tungsten Industry,32(1):47-50.
Xu Han, Xu Biao, Chen Xuannian,2017.Experimental study on recovery of quartz form Nanfen iron tailings[J].Mining En-gineering,15(5):21-24.
Yang Jianwen, Xiao Jun, Chen Daixiong,2018.Experimental study on separation of valuable metals for Nielsen Centri-fugal gravity separation concentrate[J].Nonferrous Metals(Mineral Processing Section),(5):58-63.
Yi Yunlai, Liu Zhongrong, Wei Qian,2014.Study on improving flotation indexes of fine slimes of primary tungsten[J].No-nferrous Metals(Mineral Processing Section),(1):46-47.
Zhang Guoquan, Dai Huixin,2008.On gravity dressing experiment of a scheelite mine[J].China Tungsten Industry,23(5):23-25.
Zhang Ruiyang, Mao Yuyu, Li Zhengyao,et al,2021.Study of the occurrence law of iron in different types of sorting tailings of Anshan-type low-grade hematite[J].Chinese Journal of Engineering,43(10):1304-1311.
Zhang Hong, Lan Zhuoyue,2018.Experimental research on flotation of a low-grade scheelite ore in Anhui Province[J].Multipurpose Utilization of Mineral Resources,(2):20-24.
Zhao Minjie, Fang Jianjun, Li Guodong,et al,2016.The application and research progress of Knelson concentrators in mineral beneficiation[J].Conservation and Utilization of Mineral Resources,(4):73-78.
Zhao Nan, Xianjun Lü, Liang Zhiqiang,2015.Progress of comprehensive recovery techniques of gold tailings[J].Gold,36(3):71-75.
陈杜娟,王志丰,王婷霞,2021.某尾矿综合回收选矿实验研究[J].矿产综合利用,(1):104-108.
戴新宇,王昌良,董小骥,等,2011.尼尔森选矿机回收金铜矿中的金[J].有色金属(选矿部分),(增1):143-145.
韩跃新,孙永升,李艳军,等,2015.我国铁矿选矿技术最新进展[J].金属矿山,44(2):1-11.
何桂春,肖策环,2015.江西某钨尾矿浮选试验[J].有色金属科学与工程,6(6):82-87.
黄丽娟,姜亚雄,朱坤,等,2018.云南某金矿浮选尾矿综合回收试验研究[J].黄金,39(1):77-80.
李杨,孟凡涛,王鹏,2019.黄金尾矿综合利用的研究进展[J].山东理工大学学报(自然科学版),33(1):40-44.
邵辉,2015.某低品位白钨矿石浮选试验[J].金属矿山,44(1):58-61.
孙传尧,2015.选矿工程师手册[M].北京:冶金工业出版社.
王庆华,张树光,李江山,2015.石英砂永磁强磁选—酸浸提纯试验研究[J].非金属矿,38(3):52-54.
肖文工,2017.从硫尾矿中回收低品位白钨矿粗选试验研究 [J].中国钨业,32(1):47-50.
许晗,徐彪,陈煊年,2017.南芬铁尾矿回收石英试验研究[J].矿业工程,15(5):21-24.
杨建文,肖骏,陈代雄,2018.尼尔森离心重砂有价金属分离试验研究[J]有色金属(选矿部分),(5):58-63.
易运来,刘忠荣,魏茜,2014.提高某原生钨细泥选矿指标的研究[J].有色金属(选矿部分),(1):46-47.
张虹,蓝卓越,2018.安徽某低品位白钨矿浮选试验研究[J].矿产综合利用,(2):20-24.
章国权,戴惠新,2008.云南某白钨矿重选试验研究[J].中国钨业,23(5):23-25.
张瑞洋,毛宇宇,李正要,等,2021.鞍山式贫赤铁矿不同种类分选尾矿中铁的赋存规律[J].工程科学学报,43(10):1304-1311.
赵敏捷,方建军,李国栋,等,2016.尼尔森选矿机在国内外选矿中的应用与研究进展[J].矿产保护与利用,(4):73-78.
赵楠,吕宪俊,梁志强,2015.黄金矿山尾矿综合回收技术进展[J].黄金,36(3):71-75.
[1] Yinglong YU,Yueqiang ZHOU,Yuning DONG,Chenghua SHI. Study on the Lateral Trending Regularity and Its Significance of Darongxi Scheelite Deposit in Anhua,Hunan Province [J]. Gold Science and Technology, 2023, 31(2): 252-261.
[2] Ting ZHANG,Ping LI,Bo FENG,Zhenfei LI. Experimental Study on the Recovery of Fine-grained Tungsten and Tin Mineral by Centrifugal Gravity Separation-Flotation Desulfurization Process [J]. Gold Science and Technology, 2022, 30(1): 113-121.
[3] Yunfeng GAO,Xingke YANG,Shiqi RUAN,Ke HAN,Weisheng ZHANG,Wei ZHU. Characteristics of Ore-controlling Structures and Prospecting Indicators in the Western Tungsten Deposit Area of Zhen’an,South Qinling [J]. Gold Science and Technology, 2019, 27(4): 489-496.
[4] CHEN Qiao,YANG Hongying,CHEN Guimin,TONG Linlin,NIU Huiqun. Application of Knelson Gravity Concentration in Quartz Vein Type Gold Beneficiation Process in China [J]. Gold Science and Technology, 2017, 25(5): 73-79.
[5] XIAO Jun,DONG Yanhong. Experimental Study on a Quartz-vein Type Gold Ore Using Knelson Centri-fugal Concentrator [J]. Gold Science and Technology, 2015, 23(6): 92-96.
[6] CHEN Shuibo,XIE Hongzhen,LAI Weiqiang,GUO Jinyi,YIN Han. Application of Gravity Separation and Cyanidation Combined Process on Certain Gold Ore in Xinjiang Province [J]. Gold Science and Technology, 2014, 22(6): 87-90.
[7] WANG Ping,CHEN Guimin. Baolun Gold Deposit Gravity Separation Process Optimization and Table Concentrator Unattended Remote Operation [J]. Gold Science and Technology, 2014, 22(1): 60-63.
[8] LAI Weiqiang,LIN Honghan,ZHANG Bo,YOU Manli. Experimental Research on Oxidized Refractory Gold Ore from Lintaolegai in Sumuna,Mongolia [J]. Gold Science and Technology, 2013, 21(5): 154-156.
[9] WANG J iqing, MENG Fanli, WANG Ping, YANG Xinhua, NAN Kuisong. Research and Applica tion of Gav ity Separa tion on the Production of GoldM inera l rocessing [J]. J4, 2008, 16(6): 44-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAN Jie, QIN Ze-Li, XIE Wen-Bing, CA Bang-Yong. [J]. J4, 2010, 18(4): 22 -26 .
[2] SONG He-Min, FENG Chi-Li, DING Xian-Hua. Geological-Geochemical Charicteristics and Prospecting Direction of Jiaojiekou Mining Area, North Part of Taihang Mountain[J]. J4, 2010, 18(3): 54 -58 .
[3] LI Chu-Fang, XU Yong-An, CHAO Yin-Yin, WANG Mei-Juan, ZHANG Dai, LIU Jun, SUN Liang-Liang. Looking for Strata Bound Type Gold Deposit in Liaodong Metallogenic Belt[J]. J4, 2010, 18(3): 59 -62 .
[4] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[5] CHEN Hua-Dun. [J]. J4, 2010, 18(4): 50 -53 .
[6] CUI Ting-Jun, DAI Ke-Sai, PENG Yong, FU Xing. Discussion on the Geological Characteristics and Metallogenic Regularity of the  Southern Edge of Qaidam Basin Gold Metallogenic Belt in Qinghai Province[J]. J4, 2010, 18(3): 63 -67 .
[7] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[8] SU Jian-Hua, LIU Shu-Lin. Study of Gold Extraction from Tail Solution with High Acid Content and Low Concentration[J]. J4, 2010, 18(3): 72 -75 .
[9] WANG Da-Beng, SONG Bing-Jian, HUI Ku-Meng. The Application of High Power IP Method for Searching Concealed Metallic Mine in Beishuiquan,Liaoning Province[J]. J4, 2010, 18(3): 76 -78 .
[10] LIU Qing-Guang, GAO Hai-Feng, HUANG Suo-Yang. The Application of PDA in Geology Department of Jiaojia Gold Mine[J]. J4, 2010, 18(3): 79 -82 .