img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (5): 845-855.doi: 10.11872/j.issn.1005-2518.2023.05.044

• Mining Technology and Mine Management • Previous Articles     Next Articles

Life Cycle Assessment of Two Harmless Treatment Options for Gold Tailings

Sicheng LU(),Rendong HUANG,Ying SHI   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2023-03-20 Revised:2023-05-25 Online:2023-10-31 Published:2023-11-21

Abstract:

The harmless treatment process of cyanide-containing gold tailings were used as the subject of study.The Life Cycle Assessment (LCA) method was applied to construct evaluation models for two options to quantitatively assess the environmental load and resource consumption of tailings press washing,filter residue treatment and filtrate treatment.The results show that:(1) The tailings toxicity level in Option 2 is 98.5% lower than that in Option 1,but does not achieve a lower overall environmental impact;(2) The main environmental issue in Option 1 is freshwater ecotoxicity,while the environmental impacts in Option 2 are,in descending order,resource depletion,freshwater ecotoxicity and human toxicity;(3) The Thiocyanide reduction with Fenton and dry stacking of tailings in Option 1 are the main links that affect the overall environment with the dry stacking of tailings contributing over 50% to human non-carcinogenic toxicity and freshwater ecotoxicity,and the cyanide removal with Fenton from tailings in Option 2 is the most central issue in all 14 environmental impact indicators.The large number of chemicals used in both options is a major element of the environmental impact while electrical energy shows low environmental impact.The transfer of environmental impacts from Option 1 to Option 2 occurs in terms of form,volume and linkage.In terms of overall environmental impact,the treatment of tailings can move towards pharmaceutical reduction and the use of clean,environmentally friendly substances.

Key words: cyanide-containing gold tailings, harmless treatment, tailings toxicity, LCA, transfer of environ-mental impacts, pharmaceutical reduction

CLC Number: 

  • X828

Fig.1

Boundary and flow diagrams of Option 1 and Option 2"

Table 1

Concentration of pollutants in the toxic leachate from tailings in Option 1"

污染物名称浓度/(mg·L-1污染物名称浓度/(mg·L-1
总氰化物4.25未检出
硫氰化物5.79未检出
1.800.0005
0.0111.2
0.002氨氮未检出
0.02

Table 2

Life cycle inventory in Option 1"

工艺环节物质(输入或输出)单位数值
压滤洗涤电能kW·h1.5
kg700
尾矿运输货车km10
尾矿干堆总氰化物g42.5
硫氰化物g57.9
g18
g0.10
g0.02
g0.20
g0.005
g112
铁盐脱氰硫酸亚铁kg4.2
生石灰kg0.84
电能kW·h0.889
芬顿降硫氰硫酸亚铁kg1.365
50%过氧化氢溶液kg6.573
电能kW·h0.054
泵送系统电能kW·h1.18

Table 3

Concentration of pollutants in the toxic leachate from tailings in Option 2"

污染物名称浓度/(mg·L-1污染物名称浓度/(mg·L-1
总氰化物0.072未检出
硫氰化物0.4100.0001
0.0010.0010
未检出0.1800
0.020氨氮0.1500
0.002

Table 4

Life cycle inventory in Option 2"

过程物质(输入或输出)数量
压滤洗涤电能2.17 kW·h
2 000 kg
尾矿芬顿脱氰1 500 kg
硫酸亚铁1.675 kg
50%过氧化氢溶液1.665 kg
硫酸38.49 kg
电能4 kW·h
尾矿运输货车12 t?km
尾矿贮存总氰化物0.72 g
硫氰化物4.1 g
0.01 g
0.2 g
0.02 g
0.001 g
0.01 g
1.8 g
氨氮1.5 g
铁盐脱氰(改进)硫酸亚铁1 kg
电能2.54 kW·h
因科深度脱氰亚硫酸钠2 kg
硫酸铜0.2 kg
生石灰0.4 kg
电能0.612 kW·h
泵送系统电能4.875 kWh

Table 5

Environmental impact potential of two options"

环境影响类别方案1方案2
气候变化/(kg CO2 eq)1.54E+012.06E+01
臭氧消耗/( kg CFC11 eq)1.44E-063.43E-06
电离辐射/(kBq U-235 eq)8.76E-011.72E+00
光化学臭氧形成/(kg NMVOC eq)6.59E-021.89E-01
颗粒物形成/(disease inc)9.18E-073.09E-06
人类非致癌毒性/(CTUh)4.91E-073.21E-06
人类致癌毒性/(CTUh)2.99E-085.95E-08
水陆酸化/(mol H+ eq)8.19E-026.03E-01
淡水富营养化/(kg P eq)3.46E-031.80E-02
海洋富营养化/(kg N eq)2.12E-025.57E-02
陆地富营养化/(mol N eq)2.20E-016.26E-01
淡水生态毒性/(CTUe)2.39E+032.08E+03
土地占用/(Pt)8.34E+029.43E+02
水资源消耗/(m3 depriv.)5.08E+011.79E+02
化石资源枯竭/(MJ)1.97E+022.98E+02
金属和矿物资源枯竭/(kg Sb eq)1.81E-045.52E-03
气候变化—生物因素/(kg CO方正汇总行2 eq)5.77E-012.02E-01

Fig.2

Standardized results of two options"

Fig.3

Normalized results of two options"

Fig.4

Link contribution to the environmental impact in Option 1"

Fig.5

Link contribution to the environmental impact in Option 2"

Fig.6

Elemental contribution to the environmental impact in Option 1"

Fig.7

Elemental contribution to the environmental impact in Option 2"

Chen W, Geng Y, Hong J,et al,2018.Life cycle assessment of gold production in China[J].Journal of Cleaner Production,179:143-150.
Cheng P, Jin Q, Jiang H,et al,2020.Efficiency assessment of rural domestic sewage treatment facilities by a slacked-based dea model[J].Journal of Cleaner Production,267:122111..
Chi Chongzhe, Zhai Jubin, Lan Xinhui,et al,2022.Analysis of comprehensive utilization of gold tailings[J].Gold,43(2):100-103.
Chi Chunxia,2006.Developing Strategies Study on the Basic of Gold Mining Enterprise[D].Fuyang:Liaoning Technical University.
Dou Na, Zhao Fucai, Li Yuxi,et al,2021.Test research on cyanidation tailings treatment by NaHSO3-air method[J].Energy Saving of Nonferrous Metallurgy,37(4):20-24.
Guo Lijie, Liu Guangsheng, Ma Qinghai,et al,2022.Research progress on mining with backfill technology of underground metalliferous mine[J].Journal of China Coal Society,47(12):4182-4200.
Jiang H, Jin Q, Cheng P,et al,2021.How are typical urban sewage treatment technologies going in China:From the perspective of life cycle environmental and economic coupled assessment[J].Environmental Science and Pollution Research,28(33):45109-45120.
Li Xibing, Liu Bing, Yao Jinrui,et al,2018.Theory and practice of green mine backfill with whole phosphate waste[J].The Chinese Journal of Nonferrous Metals,28(9):1845-1865.
Li Xibing, Zhou Jian, Huang Linqi,et al,2020.Review and prospect of gold mining technology in China[J].Gold,41(9):41-50.
Liu Q, Luo Y, Shi J,2022.Reagent elution combined with positive pressure filtration:A zero-discharge method for cyanide tailings remediation[J].Journal of Environmental Sciences,113:376-384.
Liu Yunhan, Liu Chaofeng, Li Yibing,et al,2022.NaClO-enhanced Fenton process for oxidation of hypophosphite and simultaneous recovery of ferric phosphate[J].Acta Scientiae Circumstantiae,42(5):247-253.
Cuicui Lü,2017.Applied Fundamental Research of Comprehensive Recovering Valuable Elements from Cyanidation Tailing[D].Beijing:University of Chinese Academy of Sciences(Institute of Process Engineering,Chinese Academy of Sciences).
Ministry of Ecology and Environment of the People’s Republic of China,2020. Standard for pollution control on the non-hazardous industrial solid waste storage and landfill: [S].Beijing:Ministry of Ecology and Enviro-nment of the People’s Republic of China.
Ministry of Environmental Protection of the People’s Republic of China,2018. Technical specification for pollution control of cyanide leaching residue in gold industry: [S].Beijing:Ministry of Environmental Protection of the People’s Republic of China.
Patel K, Singh S K,2022.A life cycle approach to environmental assessment of wastewater and sludge treatment processes[J].Water and Environment Journal,36(3):412-424.
Rahdar S, Igwegbe C A, Ghasemi M,et al,2019.Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (Us/H2O2)[J].Methodsx,6:492-499.
Sun Xuyang,2016.The Research of H2O2/(Fe2+/Fe3+) Homogeneous Catalytic Oxidation System in Gold Wastewater Thiocyanate and Cyanide Regeneration[D].Dalian:Dalian Polytechnic University.
Tang Peng, Lai Wei, Li Yana,et al,2020.Improvements of process for treating phenol cyanogen wastewater in coking and comprehensive utilization of the wastewater[J].Angang Technology,( 1):40-42.
Tao Ming, Nie Kemi, Cheng Shibing,et al,2022.Environmental impact analysis of ecological cementitious material production based on LCA method[J].Journal of Safety and Environment,22(4):2176-2183.
Wang Erzhen, Tian Fei, Fang Yufeng,et al,2022.Experimental research on ultrasound-ozone rapid degradation for polymer-containing flushing fluid[J].Industrial Water Treatme-nt: 1-11[2023-10-17].DOI:10.19965/j.cnki.iwt.2022-1045 .
doi: 10.19965/j.cnki.iwt.2022-1045
Wang Qianqian, Wu Kaijian, Wang Lu,2022.Study on carbon emission of green mine construction in Bayan Obo Mine[J].Journal of Inner Mongolia University of Science and Technology,41(1):12-16.
Wang Wenqiang, Bao Yun, Zhang Quanzhen,2021.Experimental study on the treatment of cyanide-containing wastewater by two precipitation methods[J].Shandong Chemical Industry,50(23):231-232.
Wu Baimiao, Zhang Yimei, Li Shuai,et al,2022.Comprehensive impact assessment on carbon neutralization of wastewater treatment plants based on hybridlca[J].Environmental Engineering,40(6):130-137.
Xu Xiaoquan,2022.Environmental impact analysis of carbon dioxide blasting based on LCA method[J].Mining and Metallurgical Engineering,42(3):36-40.
Yin Lu, Jin Zhenan, Yang Hongying,et al,2018.Present situation and forecast of gold resources utilization in China[J].Gold Science and Technology,26(1):17-24.
Yuan Jiasheng, Chang Yongfeng, Zheng Chunlong,et al,2021.Re-view on treatment technologies of cyanide tailing[J].The Chinese Journal of Nonferrous Metals,31(6):1568-1581.
迟崇哲,翟菊彬,兰馨辉,等,2022.黄金尾矿综合利用分析[J].黄金,43(2):100-103.
迟春霞,2006.基于黄金矿山企业生命周期的发展战略研究[D].阜新:辽宁工程技术大学.
豆娜,赵福财,李玉玺,等,2021.亚硫酸氢钠—空气法处理氰化尾渣试验研究[J].有色冶金节能,37(4):20-24.
郭利杰,刘光生,马青海,等,2022.金属矿山充填采矿技术应用研究进展[J].煤炭学报,47(12):4182-4200.
李夕兵,刘冰,姚金蕊,等,2018.全磷废料绿色充填理论与实践[J].中国有色金属学报,28(9):1845-1865.
李夕兵,周健,黄麟淇,等,2020.中国黄金矿山开采技术回顾与展望[J].黄金,41(9):41-50.
刘蕴晗,刘朝峰,李一兵,等,2022.次氯酸钠强化芬顿法处理废水中次磷酸盐同步回收磷酸铁[J].环境科学学报,42(5):247-253.
吕翠翠,2017.氰化渣中有价元素资源化高效回收的应用基础研究[D].北京:中国科学院大学(中国科学院过程工程研究所).
孙旭阳,2016.H2O2/(Fe2+/Fe3+)体系均相催化氧化金矿废水中硫氰化物及再生氰化物的研究[D].大连:大连工业大学.
唐鹏,来威,李亚娜,等,2020.焦化酚氰废水工艺改进及综合利用[J].鞍钢技术,(1):40-42.
陶明,聂克蜜,成诗冰,等,2022.基于LCA方法的生态胶凝材料生产环境影响分析[J].安全与环境学报,22(4):2176-2183.
王尔珍,田飞,方玉峰,等,2022.超声—臭氧快速降解油田含聚洗井液的试验研究[J].工业水处理: 1-11[2023-10-17].DOI:10.19965/j.cnki.iwt.2022- 1045 .
doi: 10.19965/j.cnki.iwt.2022- 1045
王茜茜,吴凯建,王路,2022.白云鄂博矿绿色矿山建设碳排放研究[J].内蒙古科技大学学报,41(1):12-16.
王文强,包允,张全真,2021.两次沉淀法处理含氰废水的实验研究[J].山东化工,50(23):231-232.
吴百苗,张一梅,栗帅,等,2022.基于LCA的污水处理方案碳中和综合影响评价[J].环境工程,40(6):130-137.
许小泉,2022.基于LCA方法的二氧化碳爆破环境影响分析[J].矿冶工程,42(3):36-40.
袁嘉声,畅永锋,郑春龙,等,2021.氰化尾渣脱氰技术综述[J].中国有色金属学报,31(6):1568-1581.
殷璐,金哲男,杨洪英,等,2018.我国黄金资源综合利用现状与展望[J].黄金科学技术,26(1):17-24.
中华人民共和国生态环境部,2020. 一般工业固体废物贮存和填埋污染控制标准: [S].北京:中华人民共和国生态环境部.
中华人民共和国环境保护部,2018. 黄金行业氰渣污染控制技术规范: [S].北京:中华人民共和国环境保护部.
[1] Bowen LI,Huajuan GU,Chenglu LI,Baoshan LIU,Xiaoping YANG. Geological Characteristics and Prospecting Potential of Sanhetun Gold Deposit in Heilongjiang Province [J]. Gold Science and Technology, 2022, 30(4): 508-517.
[2] CHEN Maohong, XIE Xianyang, MA Kezhong. Research on Lithology and Stratigraphy Conditions of Fault-controlled Ore-body in Nibao Carlin-type Gold Deposit,Guizhou Province [J]. Gold Science and Technology, 2018, 26(2): 131-142.
[3] ZHANG Pengpeng, LI Junjian, DANG Zhicai, TANG Wenlong, FU Chao, TIAN Jiepeng. Geological Feature and Prospecting Direction of Dornod Uranium Deposit in Mongolia [J]. Gold Science and Technology, 2018, 26(1): 9-16.
[4] MA Yongji,YANG Gaojie,LIU Chenxi,SHEN Liusheng. Molybdenum Polymetallic Mineralization-Alteration-Silver Anomaly Characteristics and Prospecting Prospect Analysis at Baonaogenbudun in Inner Mongolia [J]. Gold Science and Technology, 2015, 23(4): 1-7.
[5] WANG Wei,LIU Wenyi,HE Meixiang. Geochemical Study of Tanjianshan Group Metavolcanic Rocks in Shengligou Area and its Relationship with Gold Mineralization [J]. Gold Science and Technology, 2014, 22(4): 39-44.
[6] ZHANG Chunpeng,ZENG Nanshi. Geochemical Characteristics of Ore-bearing Rocks in Longtoushan Gold Deposit,Guangxi Province [J]. Gold Science and Technology, 2014, 22(2): 17-23.
[7] XU Huan,DOU Hongwei,ZHANG Zhenghu,ZHANG Zhiqiang. The Geological Features of Prospecting Indicator in Elashankou Silver-Lead-Zinc Deposit,Qinghai Province [J]. J4, 2012, 20(1): 71-77.
[8] JIN Tong-He- , WANG Xiao-Yong- , LI Jing-Jiang, DIAO Chun-Rong. Preliminary Study on the M etallogenic M odel of the Gold Deposits in Volcanicmagmatic Area of。 Eastern Jilin,China [J]. J4, 2008, 16(5): 17-22.
[9] ZENG Fanlong,ZANG Enguang,YI Cunchang,ZHANG. The Geologic Feature and the Clue for Prospecting of Sandaogou Huanan Gold Ore in Heilongjiang [J]. J4, 2008, 16(2): 37-42.
[10] WU Xiao-Xia, BAO Guang-Ying, YI You-Chang, ZHANG Fen-Ying. The Study on the Genesis and Geological Characteristics of Galinge High-Grade Iron Deposit of Qinghai Province [J]. J4, 2007, 15(4): 36-40.
[11] WANG Xiao-Yun, YANG Bao-Rong, HE Hai-Qing, YANG Xiao-Bin. Accommodating ore condition and mineralization rule research of Ag-Pb-Zn deposit in Ela mountain pass Qinghai province [J]. J4, 2007, 15(1): 41-44.
[12] WANG Fu-Chao, JIAO Ge-Jun. The Qinghai Intelligence Increases-Copper Ravine Channel HuaLixi Stage the Copper, Lead, Zinc and Tin Succeeds More Second Girdle of the Mine Geology Feature [J]. J4, 2006, 14(3): 11-15.
[13] DIAO Guo-Rong, ZHANG Xin-Yong, ZHANG Zhi-Chen. Analysis on Geological Features and Ore-prospecting Mechanism of the Wanglinkou Gold Deposit, Hebei [J]. J4, 2006, 14(2): 36-38.
[14] SUN Xu. THE DEVELOPMENT AND UTILIZATION OF GEERKE GOLD MINE [J]. J4, 2003, 11(5): 28-32.
[15] FU Dui.
GEOLOGICAL FEATURES OF LOWER EOPALEOZOIC MARINE VOLCANIC ROCK ZONE AND ANALYSIS
ABOUT THE PROSPECTS OF OREFINDING AROUND THE CHAIDAMU BASIN
[J]. J4, 2002, 10(1): 11-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!