img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (4): 689-697.doi: 10.11872/j.issn.1005-2518.2023.04.064

• Mining Technology and Mine Management • Previous Articles     Next Articles

Production Practice of JRF Micro-bubble Flotation on Carlin Types Gold Ore in Guizhou

Keqi PENG(),Ruixian ZHOU   

  1. Guizhou Zijin Mining Co. ,Ltd. ,Zhenfeng 562200,Guizhou,China
  • Received:2022-05-10 Revised:2022-06-12 Online:2023-08-30 Published:2023-09-20

Abstract:

The raw ore of a carlin gold mine in Guizhou has low gold grade,fine disseminated granularity of valuable minerals and gangue minerals,and high content of harmful elements arsenic and carbon.The recovery rate of conventional fine grinding flotation process is only 80.54% and the gold grade of tailing is 0.97×10-6,the loss of flotation tailing gold is relatively serious.In order to improve the recovery rate of gold concentrate and reduce the gold grade of flotation tailing,the process mineralogy study of secondary grinding classification overflow and flotation tailing was carried out to find out the gold distribution and loss.The results show that the gold lost in conventional fine grinding flotation tailing is mainly sulfide wrapped gold,which is mainly lost in the poor coenobium of -38 μm grade,accounting for 60.70%,and the lost sulfide gold content is high.Secondly,there are a small amount of dissociated monomer and a small amount of fusant,which are not fully recovered due to the fine particle size,and also lost in the tailings.The main cause of the loss of gold in flotation tailing is that the fine particle minerals cannot be caught by conventional fine grinding flotation.Combined with the site production situation,the JRF micro-bubble flotation was applied to rough selection Ⅰ operation and scavenge Ⅳ tailing for reselection test.The test results show that JRF micro-bubble flotation has a significant catching effect on some fine particle minerals in tailing,which can further strengthen the capture of sulfide poor coenobium of -38 μm grade and a amount dissociation monomer of -20 μm grade in conventional fine grinding flotation scavenge Ⅳ tailing,and reduce the loss of gold in flotation tailing.After the technical transformation,the cumulative recovery rate of gold is 82.39% and the tailing grade is 0.88×10-6.The recovery rate increased by 1.85 percentage points,and the tailing grade decreased by 0.09×10-6,and the flotation index was gradually improved,which increased the economic benefits of enterprises.

Key words: gold, process mineralogy, JRF micro-bubble flotation, flotation tailing, recovery, fine particles

CLC Number: 

  • TD923

Table 1

Analysis results of multi-elements of raw ore(%)"

化学成分含量化学成分含量
Au3.98Pb0.01
Ag<0.01Zn0.01
TS5.80CaO7.49
S2-5.12MgO2.63
As0.41Al2O34.69
C6.03SiO237.03
C有机1.53TiO20.82
Fe8.22Hg0.001

Table 2

Analysis results of gold phase of raw ore"

相别含量/(×10-6占比/%
合计3.990100.00
裸露金0.1654.14
碳酸盐和氧化物包裹金0.0581.44
硫化物和碳质包裹金3.53088.53
硅酸盐及其他包裹金0.2355.89

Table 3

Analysis results of the composition and content of raw ore(%)"

矿物名称含量矿物名称含量
黄铁矿9.63铁白云石31.05
毒砂0.34白云石5.70
磁黄铁矿0.01方解石9.19
黄铜矿0.01菱铁矿0.19
闪锌矿0.01石英30.78
方铅矿<0.01绢云母9.34
褐铁矿0.08绿泥石0.14
铁矾0.02锐钛矿1.52
重晶石0.05有机碳1.34
磷灰石0.26其他矿物0.34

Fig.1

Flowsheet of flotation process"

Table 4

Granularity-dissociation coenobium situation of sulfide of classification overflow tailings in secondary grinding"

解离情况/%含量/%硫化物连生情况/%各粒度占比/%
与氧化物及碳酸盐与硅酸盐及碳质0~10 μm10~20 μm20~38 μm38~75 μm75~150 μm
合计100.003.0418.6918.0629.1435.9315.890.98
x=10078.27--13.1122.6229.3912.470.68
80≤x<1005.220.644.580.020.342.342.320.20
50≤x<805.070.694.380.282.141.910.640.10
x<5011.441.719.734.654.042.290.460.00

Table 5

Granularity composition and gold metal distribution of overflow tailings from secondary grinding classification"

粒级/mm产率/%

金品位

/(×10-6

金金属分布率/%
个别负累积
合计100.00-4.02100.00
+0.07410.21100.002.396.07
-0.074+0.04513.7689.793.0110.29
-0.045+0.0386.9976.044.047.02
-0.038+0.0256.2569.044.807.46
-0.025+0.01018.8962.797.4735.10
-0.01043.9043.903.1234.06

Table 6

Granularity-dissociation coenobium situation of sulfide in flotation tailings"

解离情况/%含量/%硫化物连生情况/%各粒度占比/%
与氧化物与碳酸盐与硅酸盐0~10 μm10~20 μm20~38 μm38~75 μm75~150 μm
合计100.006.1612.4859.4642.7935.3117.633.890.38
x=10021.90---12.816.421.730.940.00
80≤x<1007.613.220.364.031.023.562.570.460.00
50≤x<809.792.540.616.642.023.483.040.870.38
x<5060.700.4011.5148.7926.9421.8510.291.620.00

Table 7

Granularity composition and gold metal distribution in flotation tailings"

粒级/mm

个别产率

/%

负累积产率

/%

金品位

/(×10-6

金金属分布率

/%

合计100.00-1.28100.00
+0.07411.81100.001.6615.26
-0.074+0.04514.8688.191.8721.63
-0.045+0.0385.6073.331.787.76
-0.038+0.0257.0367.731.659.03
-0.025+0.01019.5860.701.5122.95
-0.01041.1241.120.7323.37

Fig.2

Fine poor coenobium pyrite in flotation tailings"

Fig.3

Schematic diagram of structure and principle JRF micro-bubble flotation machine"

Fig.4

Comparison process of the rough selection Ⅰoperation(JRF micro-bubble flotation withconventional flotation)"

Table 8

Model and specification of flotation equipment"

作业名称设备型号数量/台容积/m3
粗选BF-10710
扫选BF-101810
精选BF-454
微泡浮选JRF3217/4S110

Table 9

Comparison of industrial test results of JRF micro-bubble flotation with conventional flotation in the rough selection Ⅰ operation"

项目金品位/(×10-6产率/%金回收率/%
原矿精矿尾矿
精锐微泡浮选4.7118.861.1320.2080.89
常规细磨浮选4.2619.241.0717.5679.33

Fig.5

Particle size distribution curves of the concentrate products from rough selection Ⅰby JRF micro-bubble flotation"

Fig.6

Particle size distribution curves of the concentrate products from rough selection Ⅰby conventional flotation"

Fig.7

Comparison process of the scavenging Ⅳ tailing reselection(JRF micro-bubble flotation with conventional flotation)"

Fig.8

Comparison of industrial test index before and after technical transformation"

Table 10

Granularity-dissociation coenobium situation of sulfide in JRF micro-bubble flotation concentrate"

解离情况/%含量/%硫化物连生情况/%各粒度占比/%
与氧化物和碳酸盐与硅酸盐0~10 μm10~20 μm20~38 μm38~75 μm75~150 μm
合计100.0010.7565.0733.5332.7123.329.660.78
x=10024.19--13.767.061.981.240.15
80≤x<1005.411.204.220.070.731.972.500.14
50≤x<807.231.295.940.622.103.001.250.26
x<5063.178.2654.9119.0822.8216.374.670.23

Table 11

Granularity composition and metal distribution in JRF micro-bubble flotation concentrate"

粒级/mm

个别产率

/%

负累积产率

/%

金品位

/(×10-6

金金属分布率

/%

合计100.00-4.48100.00
+0.1063.35100.001.851.38
-0.106+0.07422.9396.653.6418.63
-0.074+0.04521.3873.724.6722.29
-0.045+0.0388.4352.344.718.86
-0.038+0.0255.2243.914.785.57
-0.02538.6938.695.0143.26

Fig.9

Fine particles coenobium of pyrite in JRF micro-bubble flotation concentrate"

Ban Jinpeng, Chang Limin, Dai Yunpeng,et al,2019.Challenges and countermeasures for water kicks in tunnel drilling at Shuiyindong gold mine in southwest Guizhou[J].Exploration Engineering(Rock and Soil Drilling and Excavation Engineering),46(11):14-20.
Cao Yijun, Yan Xiaokang, Wang Lijun,et al,2017.The micro-turbulence intensification on the fine minerals flotation[J].Conservation and Utilization of Mineral Resources,(2):113-118.
Chang Zheng, Xiong Xin, Sun Xiaohua,2021.Experimental research on the mineral processing of refractory microfine disseminated arsenic and carbonaceous gold ore from Qinghai[J].Gold,42(1):55-58,63.
Chen Xiaodong,2021.Principle and practice of enhanced flotation performance of fine particles by JRF micro-bubble flotation machine[J].Nonferrous Metals(Mineral Processing Section),(1):112-116.
Chen Zhongxin,1997.Flotation machine[J].Foreign Mineralation Express,(13):11-18.
Cui Lifeng, Tian Shuguo, He Meili,2018.Experimental study on mineral processing of fine-grained and disseminated refractory carbon gold ore from Shuiyindong of Guizhou[J].Comprehensive Utilization of Minerals,(4):37-41.
Cui Yiqi, Chen Hailiang, Dong Peng,et al,2014.Research on the status of pretreatment techniques for carlin-type gold deposits[J].Gold,35(10):61-63.
Gui Q H, Wang S X, Zhang L B,2021.The mechanism of ultrasound oxidation effect on the pyrite for refractory gold ore pretreatment[J].Arabian Journal of Chemistry,14(4):103045.
Lee S, Sadri F, Ghahreman A,et al,2022.Enhanced gold recovery from alkaline pressure oxidized refractory gold ore after its mechanical activation followed by thiosulfate leaching[J].Journal of Sustainable Metallurgy,8(1):186-196.
Li Guo, Pi Qiaohui, Wei Chaowen,et al,2019.Occurrence of gold in Shuiyindong gold deposit,Guizhou[J].Journal of Guilin University of Technology,39(4):817-829.
Li X X, Zhu X Q, Ling Y T,et al,2017.Mineralogy and geochemistry characteristics and genetic implications for stratabound carlin-type gold deposits in southwest Guizhou,China[J].Journal of Nanoscience and Nanotechnology,17(9):6307-6317.
Liu Keyong,2016.Problems and suggestions existing in gold mine development in China[J].Modern State-Owned Enterprise Research,(24):202-203.
Liu Yuan, Hou Zhongjian, Li Dingwu,2013.Present situation of research into carlin-type gold deposits in China[J].Sichuan Geological Journal,33(2):132-136.
Man Lumei,2021.Research and exploration on the combined technology of beneficiation and metallurgy for complex carlin type gold deposits[J].China Nonferrous Metals Metallurgy,50(3):63-69.
Ng S W, Yang Y, Su X Z,et al,2022.Characterization of preg-robbing carbonaceous minerals from the Shuiyindong carlin-type gold deposit via spectroscopic techniques[J].Mining,Metallurgy and Exploration,39:169-188.
Qi Jian, Pan Chenglong, Tian Huimin,2021.Development trend and policy suggestions of China’s gold industry [J].China Market,(15):1-8.
Salazar-Campoy M M, Valenzuela-García J L, Quiróz-Castillo L S,et al,2020.Comparative study of gold extraction from refractory pyritic ores through conventional leaching and simultaneous pressure leaching/oxidation[J].Mining Engineering,72(8):45-46.
Sun Zhongmei, Sun Chunbao, Gan Yonggang,2014.Study on flotation technology on carlin types gold ore in Guizhou[J].Comprehensive Utilization of Minerals,(5):34-37.
Wei Longming,1996.General characters of gold mineral in carlin-type gold deposit,China [J].Gold Geology,2(3):15-17.
Wu Tianjiao, Cao Huan, Niu Fangyin,et al,2021.Study on gold extraction from a carbon-bearing fine-grained refractory gold ore by flotation process[J].Gold Science and Technology,29(5):761-770.
Xu Tao, Su Shuyun, Liao Zhanpi,et al,2013.Study on modes of occurrence of gold for Shuiyindong gold bearing pyrite in Guizhou Province[J].Gold Science and Technology,21(5):86-92.
Xu Xiaoyang,2020.Research on extracting gold from refractory gold ore by POX-cyanidation technique [J].Gold,41(4):50-53.
Yang Bo, Tong Xiong, Xie Xian,et al,2020.Study on the gold recovery from flotation tailings of a refractory gold ores in Gansu Province by a process combining mineral processing and metallurgy[J].Gold Science and Technology,28(2):285-292.
班金彭,畅利民,代云鹏,等,2019.黔西南水银洞金矿涌水坑道钻探难点与对策[J].探矿工程(岩土钻掘工程),46(11):14-20.
曹亦俊,闫小康,王利军,等,2017.微细粒浮选的微观湍流强化[J].矿产保护与利用,(2):113-118.
常征,熊馨,孙晓华,2021.青海某含砷含碳微细浸染型难处理金矿石选矿试验研究[J].黄金,42(1):55-58,63.
陈晓东,2021.精锐微泡浮选机强化微细粒浮选的机理与实践[J].有色金属(选矿部分),(1):112-116.
陈忠信,1997.浮选机[J].国外选矿快报,(13):11-18.
崔立凤,田树国,何美丽,2018.贵州水银洞含炭细粒浸染型难选冶金矿石选矿试验研究[J].矿产综合利用,(4):37-41.
崔毅琦,陈海亮,董鹏,等,2014.卡林型金矿预处理技术研究现状[J].黄金,35(10):61-63.
李国,皮桥辉,韦朝文,等,2019.贵州水银洞金矿金的赋存状态[J].桂林理工大学学报,39(4):817-829.
刘科勇,2016.我国金矿开发存在的问题及建议[J].现代国企研究,(24):202-203.
刘源,侯中健,李定武,2013.我国卡林型金矿研究现状[J].四川地质学报,33(2):132-136.
满露梅,2021.复杂卡林型金矿选冶联合工艺的研究与探索[J].中国有色冶金,50(3):63-69.
齐剑,潘成龙,田惠敏,2021.我国黄金行业发展趋势及政策建议[J].中国市场,(15):1-8.
孙忠梅,孙春宝,甘永刚,2014.贵州某卡林型金矿浮选工艺研究[J].矿产综合利用,(5):34-37.
韦龙明,1996.中国卡林型金矿床金矿物的一般特征[J].黄金地质,2(3):15-17.
吴天骄,曹欢,牛芳银,等,2021.某含碳微细粒难处理金矿浮选提金工艺研究[J].黄金科学技术,29(5):761-770.
许涛,苏妤芸,廖占丕,等,2013.贵州水银洞含金黄铁矿中金的赋存形式探讨[J].黄金科学技术,21(5):86-92.
许晓阳,2020.难处理金矿石加压氧化——氰化提金技术研究[J].黄金,41(4):50-53.
杨波,童雄,谢贤,等,2020.选冶联合提高甘肃某难浸金矿浮选尾矿金回收率的试验研究[J].黄金科学技术,28(2):285-292.
[1] Yulong HE, Jia LIU, Fengshan MA, Guang LI, Jie GUO. Analysis on the Characteristics and Causes of Ground Subsidence in Sanshandao Gold Mine [J]. Gold Science and Technology, 2023, 31(4): 605-612.
[2] Zhongping FAN, Wang ZHANG, Wei WANG. Study on Metallogenic Regularity and Prospecting Prediction of Shanyang-Shangnan Gold Deposits in Shaanxi Province [J]. Gold Science and Technology, 2023, 31(4): 560-579.
[3] Shun ZHANG,Xianjun SHENG,Honghao ZHAO. Study on Ore-controlling Model and Prospecting Results of 108# Vein Branch in Linglong Gold Field [J]. Gold Science and Technology, 2023, 31(3): 453-463.
[4] Jiantao SI,Desheng BAI,Zunqun XIAO,Shuiping LI,Dong QI,Jin SUN. Geological Characteristics and Mineralization Era of Geita Greenstone Belt in Tanzania [J]. Gold Science and Technology, 2023, 31(3): 387-395.
[5] Dafu WANG,Jianzhong LIU,Zepeng WANG,Fa’en CHEN,Chengfu YANG,Liangyi XU,Junhai LI,Jingke LIU,Qiquan PAN,Chengxiong LONG,Xiaoyong WANG. Geological Characteristics and Prospecting Prediction of Gold Deposit in Kawu Area,Zhenfeng County,Guizhou Province [J]. Gold Science and Technology, 2023, 31(3): 433-442.
[6] Zhigang LIU,Aikui ZHANG,Yongle LIU,Yong ZHANG,Shuyue HE,Feifei SUN. Ar-Ar Dating of Sericite from Aqiyin Gold Deposit in the West Section of East Kunlun and Its Geological Significance [J]. Gold Science and Technology, 2023, 31(3): 378-386.
[7] Wenwei CUI,Huixia CHAO,Hujun HE,Xingke YANG,Junjie YANG,Haolei ZHU,Xu WU. Element Geochemical Characteristics and Significance of Ore,Wall Rock and Stratum in Fuwen Gold Deposit,Hainan [J]. Gold Science and Technology, 2023, 31(3): 423-432.
[8] Huanzhao GUO,Ming KANG,Wende ZHU,Pengwei WANG,Jiekai DUAN. Experimental Study on Geoelectrochemical Exploration Method in Daiyin-zhang Gold Polymetallic Deposit in Wutai Area,Shanxi Province [J]. Gold Science and Technology, 2023, 31(3): 443-452.
[9] Chaocong ZENG,Guangsheng ZHANG,Weirong WU,Wanfu HUANG,Xindong LI,Zekai WANG,Guanfa LIU. Experimental Study on Recovery of Gold from Ammonium Thiocyanate Leaching Solution by Electrodeposition [J]. Gold Science and Technology, 2023, 31(2): 349-358.
[10] Huahao WU,Yongjun SHAO,Qingquan LIU,Zhilin WANG,Yuce ZHANG,Zikun YUAN. Genesis of the Zhengchong Gold Deposit in Northeast Hunan—Constraints from Geochronology and In-situ Sulfur Isotope [J]. Gold Science and Technology, 2023, 31(2): 190-205.
[11] Linlin LIU,Jun CHEN,Zaifeng YANG,Lijuan DU,Yanbing JI,Lulin ZHENG. Chemical Characteristics of Apatite Minerals in Hydrothermal Gold Deposits with Different Metallogenic Temperatures in the Yunnan-Guizhou-Guangxi Region:A Discussion on the Particularity of Sources of Ore-forming Fluids of the Carlin-type Gold Deposits [J]. Gold Science and Technology, 2023, 31(2): 219-231.
[12] Yinglong YU,Yueqiang ZHOU,Yuning DONG,Chenghua SHI. Study on the Lateral Trending Regularity and Its Significance of Darongxi Scheelite Deposit in Anhua,Hunan Province [J]. Gold Science and Technology, 2023, 31(2): 252-261.
[13] Yong ZHANG,Aikui ZHANG,Shuyue HE,Zhigang LIU,Yongle LIU,Peng ZHANG,Feifei SUN. Age,Petrogenesis and Tectonic Significance of Granodiorite in Kudeerte Gold Deposit,Qimantage Area,East Kunlun [J]. Gold Science and Technology, 2023, 31(1): 1-14.
[14] Yaoyu CHEN,Xinghua YAO,Xiangsheng TIAN,Lanjun FENG. Characteristics of Main Orebody of Jiagantan Gold Deposit and Comparative Analysis with Regional Typical Gold Deposit in Gannan Area [J]. Gold Science and Technology, 2023, 31(1): 50-63.
[15] Xiaoni CUN,Yushan XUE,Yuliang WANG,Xinwei LIU. Typomorphic Characteristics and Prospecting Significance of Pyrite in Longtougou Gold Deposit,Shaanxi Province [J]. Gold Science and Technology, 2023, 31(1): 64-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Yuan-Hua, YANG Gui-Cai, ZHANG Lun, JI Jin-Zhong, LI Wen-Liang. Petrology and Geochemistry of Granites in Yangshan Ultra-large Gold Deposit,West Qinling[J]. J4, 2010, 18(6): 1 -7 .
[2] GENG A-Jiao, DUAN Jian-Hua. Analysis on the Ore-controlling Factors and Prospecting of Manzhanggang Gold Mine[J]. J4, 2010, 18(6): 34 -37 .
[3] LIU J ianzhong ,XIA Yong ,ZHANG Xingchun ,DENG Yiming ,SU Wenchao ,Tao Yan. Model of Strata Karlin - type Gold Deposit : The Shuiy in gdong Super- scale Gold Deposit[J]. J4, 2008, 16(3): 1 -5 .
[4] CUI Ting-Jun, DAI Ke-Sai, PENG Yong, FU Xing. Discussion on the Geological Characteristics and Metallogenic Regularity of the  Southern Edge of Qaidam Basin Gold Metallogenic Belt in Qinghai Province[J]. J4, 2010, 18(3): 63 -67 .
[5] ZHANG Yuan, ZHANG Hong-Xi. [J]. J4, 2010, 18(4): 12 -16 .
[6] LI Bin, JU Hai-Xiang, YANG Mu, DU Gao-Feng, HUI Ji-Kang, WANG Tian-Guo. [J]. J4, 2010, 18(4): 17 -21 .
[7] ZHOU Dian-Yu, SONG Bing-Jian, HUAI Bao-Feng. Geological Features and Prospecting Direction of Duhuangling Gold Deposit, Jilin[J]. J4, 2007, 15(3): 11 -14 .
[8] ZHANG Feng-Xia, CHENG You-Fa, ZHANG Zhi-Gang, YAN Fei. [J]. J4, 2010, 18(4): 75 -79 .
[9] LIU Dong-Hai, LIU Xin-Hui. Research on the Characteristics of Pyrite and its Gold -bearing Properties of Zhaishang Oversized Gold Deposit in Western Qinling[J]. J4, 2010, 18(6): 8 -12 .
[10] HUANG Jian-Jun, LI Tian-En, FAN Gong-Ke. Discussion on Geological Setting of Metallogenic and Prospecting Potentiality of Daxinganling Region[J]. J4, 2010, 18(6): 13 -17 .