img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (2): 263-271.doi: 10.11872/j.issn.1005-2518.2022.02.146

• Mining Technology and Mine Management • Previous Articles     Next Articles

Influence of Mixed Coarse Aggregate Ratio on Strength and Fluidity of Filling Slurry

Yongliang FAN1(),Jiqiang CUI1(),Yuankun ZHANG1,Feng LI2,3,Chunyun HUANG1,Yuantong GU1,2,Jianyuan HE1   

  1. 1.Longshou Mine, Jinchuan Group Co. , Ltd. , Jinchang 737100, Gansu, China
    2.State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchang 737100, Gansu, China
    3.Nickel Cobalt Research and Design Institute of Jinchuan, Jinchang 737100, Gansu, China
  • Received:2021-10-11 Revised:2021-12-12 Online:2022-04-30 Published:2022-06-17
  • Contact: Jiqiang CUI E-mail:1031698188@qq.com;1027241609@qq.com

Abstract:

The downword drift cemented filling method is an effective way for mining thick,broken,high-grade deposits in Jinchuan mining area.However,it not only has complicated process and high cost,but also requires high quality of filling body.In order to alleviate the pressure caused by insufficient rod milling sand production capacity and increase of produciton cost in Jinchuan mining area,and improve the comprehensive performance of filling body,the mechanical test of the filling body and the rheological properties,fluidity and bleeding rate test of the slurry were carried out,based on cement-sand ratio of 1∶4,using -5 mm rod mill sand,-12 mm waste rock as aggregate,the new consolidation powder as cementitious material.The influence of waste rock and rod milling sand ratio on the strength characteristics,fluidity,rheology and bleeding characteristics of filling body were studied,and the optimal ratio parameters were proposed. The results show that the 3 d strength of filling body decreases slightly,and the 7 d and 28 d strength increased slightly with the increase of the waste rock content.The yield stress of the slurry increase with the increase of waste rock content,and the viscosity coefficient decreases significantly.When the content of waste rock is less than 35%,the yield stress of slurry is less than 150 Pa.The slump and diffusivity degree decrease sharply with the increase of the waste rock content. The slump degree is generally between 27~29 cm,which can meet the requirements of gravity transportation.The bleeding rate of the slurry is 9%~12%.With the increase of waste rock content,the bleeding rate decreases,which is beneficial to improve the segregation resistance of the slurry.According to the test results,the optimal dosage of waste rock in the mixed coarse aggregate is 30%,and the optimal mass concentration is 82%~83%. Under the condition of these parameters,the indexes of filling body can meet the filling quality standard of Jinchuan mining area,which has great significance and application potential to improve the stability of filling body and reduce the cost of Jinchuan mining area.

Key words: mixed coarse aggregate, rod milling sand, waste rock, strength of filling body, rheological parameters, bleeding rate, Longshou mine

CLC Number: 

  • TD853

Fig.1

Filling aggregate samples"

Table 1

Chemical compositions of filling aggregate(%)"

化合物名称废石中含量棒磨砂中含量
SiO236.3166.95
Al2O33.3912.50
CaO3.864.32
MgO28.151.88
Fe2O39.512.52
SO31.672.15
Na2O1.252.45
K2O1.652.35
其他14.214.88

Fig.2

Particle size distribution of filling aggregate"

Table 2

Design of filling test scheme"

试验编号废石∶棒磨砂灰砂比浆体质量浓度/%
S11∶91∶478
S21∶91∶480
S31∶91∶482
S42∶81∶478
S52∶81∶480
S62∶81∶482
S73∶71∶478
S83∶71∶480
S93∶71∶482
S104∶61∶478
S114∶61∶480
S124∶61∶482
S135∶51∶478
S145∶51∶480
S155∶51∶482

Fig.3

Relationship between waste rock content and compressive strength of filling body"

Fig.4

Relationship between shear stress and shear rate of filling slurry at different mass concentrations"

Table 3

Fitting results of H-B rheological model"

废石掺量/%质量浓度/%H-B流变模型R2
1082τ=12.08+7.50γ0.410.96
1084τ=33.08+4.53γ0.470.92
2080τ=39.48+2.96γ0.540.93
2082τ=43.81+1.68γ0.640.88
2084τ=51.53+1.83γ0.570.86
3078τ=34.94+0.50γ0.880.81
3080τ=42.03+2.86γ0.580.82
3082τ=76.21+0.27γ0.980.87
3084τ=112.71+0.65γ0.790.81
4078τ=57.79+0.16γ1.290.96
4080τ=76.32+1.05γ0.910.94
4082τ=191.33+0.09γ1.570.94
4084τ=208.19+3.63γ0.690.94

Fig.5

Influence of waste rock content on the rheological parameters of filling slurry"

Fig.6

Relationship between waste rock content and flow performance parameters of filling slurry"

Fig.7

Influence of waste rock content on the bleeding rate of coarse aggregate filling slurry"

Table 4

Recommended performance parameters of mixed coarse aggregate filling and slurry"

参数名称数值参数名称数值
灰砂比1∶428 d强度/MPa6.02
废石/棒磨砂比值3∶7屈服应力/Pa76.21
浆体质量浓度/%82~83黏度系数/(Pa·s)0.27
3 d强度/MPa1.36塌落度/cm27.4
7 d强度/MPa3.98泌水率/%9.4
Ba Lei, Wei Hanbo, Wen Zhenjiang,et al,2020.Optimization proportioning test on mixed aggregate of waste rock and copper slag tailings[J].Mining Research and Development,40(2):31-37.
Deng X J, Klein B, Hallbom D J,et al,2018.Influence of particle size on the basic and time-dependent rheological behaviors of cemented paste backfill[J].Journal of Materials Engineering and Performance,27(7):3478-3487.
Gao Qian, Yang Xiaobing, Wen Zhenjiang,et al,2019.Optimization of proportioning of mixed aggregate filling slurry based on BBD response surface method[J].Journal of Hunan University(Natural Sciences),46(6):47-55.
Guo Huigao, Wu Shuanjun, Gao Qian,et al,2021.Research progress of the utilization of solid waste in large scale nickel mines in China[J].Journal of Xuzhou Institute of Technology(Natural Sciences Edition),36(2):46-52.
Hou Yongqiang, Yin Shenghua, Zhao Guoliang,et al,2021.Strength characteristics of mixed aggregate cemented backfill and reasonable matching with excavated ore body[J].The Chinese Journal of Nonferrous Metals,31(12):3750-3761.
Li Litao,2020.Study on Segregation Mechanism and Control Technology of Coarse Aggregate Filling Slurry in Jinchuan[D].Beijing:University of Science and Technology Beijing.
Liu Xiaohui, Su Xianfeng, Huang Mingqing,et al,2016.Study on pipeline transport drag reduction technology of CPB based on the fuller grading theory[J].Metal Mine,45(10):40-44.
Wang Youtuan,2016.Study on Low-cost Cementitious Materials and Pipeline Transportation Characteristics of High Density Slurry in Jinchuan Nickel Mine[D].Beijing:University of Science and Technology Beijing.
Wen Zhenjiang, Gao Qian, Wang Yongding,et al,2020. Experiment on correlation between reological properties of filling slurry with different mass concentration and mixed aggregate gradation[J].Journal of Northeastern University (Na-tural Science),41(5):642-648.
Wu Fan, Yang Xiaobing, Yang Zhiqiang,et al,2020.Anti-segregation property and its mathematical model of high concentration filling slurry with coarse aggregate[J].Journal of Central South University (Science and Technology),309(5):153-160.
Wu J Y, Feng M M, Chen Z Q,et al,2018. Particle size distribution effects on the strength characteristic of cemented paste backfill[J].Minerals,8(8):322.
Xiao B L, Wen Z J, Wu F,et al,2019. A simple L-shape pipe flow test for practical rheological properties of backfill slu-rry:A case study[J].Powder Technology,356:1008-1015.
Xue Xilong, Dai Yong, Fan Yongliang,et al,2020.Study on the mode and technology for wasteless synergistic mining of hard rock uranium deposits[J].Metal Mine,49(5):95-100.
Yan Bingheng, Li Cuiping, Wu Aixiang,et al,2018.Analysis on influencing factors of coarse particles migration in pipeline transportation of paste slurry[J].The Chinese Journal of Nonferrous Metals,28(10):2143-2153.
Yang Tianyu, Qiao Dengpan, Wang Jun,et al,2021. Numerical simulation and new model of pipeline transportation resistance of waste rock aeolian sand high concentration slurry[J].The Chinese Journal of Nonferrous Metals,31(1):234-244.
Yin Shenghua, Hou Yongqiang, Yang Shixing,et al,2021. Analysis of deformation failure and energy dissipation of mixed aggregate cemented backfill during uniaxial compression[J].Journal of Central South University(Science and Technology),52(3):936-947.
Yin Shenghua, Liu Jiaming, Chen Wei,et al,2020. Rheological properties of coarse aggregate at low temperature and its regression models[J].Journal of Central South University(Science and Technology),51(12):3379-3388.
Yin Shenghua, Liu Jiaming, Shao Yajian,et al,2020. Influence rule of early compressive strength and solidification mechanism of full tailings paste with coarse aggregate[J].Journal of Central South University(Science and Technology),51(2):478-488.
Zhang Lei, Qiao Dengpan, Cheng Weihua,et al,2012.Analysis on gradation and intensity of coarse aggregate of JNMC[J].Mining & Metallurgy,21(3):12-15,20.
Zhang Lianfu, Wu Aixiang, Wang Hongjiang,2018.Effects and mechanism of pumping agent on rheological properties of highly muddy paste[J].Chinese Journal of Engineering,40(8):918-924.
Zhang Peng, Gao Qian, Wen Zhenjiang,et al,2021. Influencing factors on backfill strength and a combined strength prediction model[J].Journal of Northeastern University(Natural Science),42(2):232-241.
Zhang Q L, Li Y T, Chen Q S,et al,2021.Effects of temperatures and pH values on rheological properties of cemented paste backfill[J].Journal of Central South University,28(6):1707-1723.
Zhang Xiuxiang,2016.Research on the Rheological Characteristics and the Influence of Multiple Factors of High Conce-ntration Filler Slurry in Mine Waste Rock Tailings[D].Ku-nming:Kunming University of Science and Technology.
巴 蕾,韦寒波,温震江,等,2020.废石—铜渣尾砂混合骨料配比优化试验[J].矿业研究与开发,40(2):31-37.
高谦,杨晓炳,温震江,等,2019.基于RSM-BBD的混合骨料充填料浆配比优化[J].湖南大学学报(自然科学版),46(6):47-55.
郭慧高,武拴军,高谦,等,2021.我国大型镍矿充填采矿固废资源化利用研究进展[J].徐州工程学院学报(自然科学版),36(2):46-52.
侯永强,尹升华,赵国亮,等,2021.混合骨料胶结充填体强度特性及与开挖矿体的合理匹配[J].中国有色金属学报,31(12):3750-3761.
李立涛,2020.金川粗骨料充填料浆离析机理及控制技术研究[D].北京:北京科技大学.
刘晓辉,苏先锋,黄明清,等,2016.基于Fuller级配理论的膏体管道输送减阻技术研究[J].金属矿山,45(10):40-44.
王有团,2016.金川低成本充填胶凝材料及高浓度料浆管输特性研究[D].北京:北京科技大学.
温震江,高谦,王永定,等,2020.不同浓度料浆流变特性与混合骨料级配相关性试验[J].东北大学学报(自然科学版),41(5):642-648.
吴凡,杨晓炳,杨志强,等,2020.高浓度粗骨料充填料浆抗离析特性及其数学模型[J].中南大学学报(自然科学版),309(5):153-160.
薛希龙,戴勇,范永亮,等,2020.硬岩铀矿无废协同开采模式及技术研究[J].金属矿山,49(5):95-100.
颜丙恒,李翠平,吴爱祥,等,2018.膏体料浆管道输送中粗颗粒迁移的影响因素分析[J].中国有色金属学报,28(10):2143-2153.
杨天雨,乔登攀,王俊,等,2021.废石—风砂高浓度料浆管道输送数值模拟及管输阻力新模型[J].中国有色金属学报,31(1):234-244.
尹升华,侯永强,杨世兴,等,2021.单轴压缩下混合集料胶结充填体变形破坏及能耗特征分析[J].中南大学学报(自然科学版),52(3):936-947.
尹升华,刘家明,陈威,等,2020a.粗骨料膏体低温流变性能及回归模型[J].中南大学学报(自然科学版),51(12):3379-3388.
尹升华,刘家明,邵亚建,等,2020a.全尾砂—粗骨料膏体早期抗压强度影响规律及固化机理[J].中南大学学报(自然科学版),51(2):478-488.
张磊,乔登攀,程纬华,等,2012.金川粗骨料级配与强度分析[J]. 矿冶,21(3):12-15,20.
张连富,吴爱祥,王洪江,2018.泵送剂对高含泥膏体流变特性影响及机理[J].工程科学学报,40(8):918-924.
张鹏,高谦,温震江,等,2021.充填体强度影响因素及组合预测模型[J].东北大学学报(自然科学版),42(2):232-241.
张修香,2016.矿山废石—尾砂高浓度充填料浆的流变特性及多因素影响规律研究[D].昆明:昆明理工大学.
[1] Qinli ZHANG, Yibo YU, Daolin WANG. Stability Analysis and Evaluation of Filling Cantilever Structure in Longshou Mine [J]. Gold Science and Technology, 2022, 30(2): 254-262.
[2] . Experimental Research on Application of Mixed Aggregate of Mining Waste Rock and Tailings in Downward Layered Approach and Cemented Filling Mining Method HE Jianyuan1,LI Hongye1,GAO Qian2,YIN Shenghua2 [J]. Gold Science and Technology, 2021, 29(4): 564-572.
[3] CAO Shirong,HAN Jianwen,LI Yongxin,WANG Xiaojun,FENG Xiao,ZHUO Yulong. Damage Analysis of Solid Waste Rock Cemented Filling Body Based on Acoustic Emission Probability Density Function [J]. Gold Science and Technology, 2017, 25(6): 92-98.
[4] SHI Xiuzhi,FAN Yuqian,SHANG Xueyi. Strength Prediction of Filling Body Based on PCA and BP Neural Networks [J]. Gold Science and Technology, 2016, 24(3): 64-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!