img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (1): 93-104.doi: 10.11872/j.issn.1005-2518.2022.01.127

• Mining Technology and Mine Management • Previous Articles     Next Articles

Analysis of Internal-caused Fire in the Stopes Based on Chain Variable Preci-sion Rough Fuzzy Set

Shan YANG(),Mingke YUAN,Kaijun SU,Zitong XU   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2021-09-14 Revised:2021-11-13 Online:2022-02-28 Published:2022-04-25

Abstract:

The sulpfur content of ores in an underground pyrrhotite is nearly 50%.Internal-caused fires are prone to happen in such mines because of ore spontaneous combustion,and the internal-caused fire has become a major hidden danger to the sofety production of mine enterprises.In the underground mine stopes,there are many complex factors affecting the internal-caused fire.It covers multiple levels of the situation about cause and effects of the fire in the stopes.Considering 9 influencing factors such as sulfur content and temperature of ore, the impact indicators,probabilities of spontaneous combustion and its results of the internal-caused fire in the typical stopes of the mine were statistically analyzed.Then a multi-level analysis index system for fire in the stopes was constructed,and the knowledge system of rough fuzzy set was established.The condition attribute of the model is the impact indicators of internal-caused fire,and the decision attribute of the model are consequences severity and judgement result of spontaneous combustion of internal-caused fire in the stopes.For the above two kinds of knowledge systems,the sample object sets of the stope is divided into classes by equivalence partitioning according to condition attributes and decision attributes.The classification quality of the conditional attribute set of the spontaneous combustion knowledge system and fire consequences knowledge system is 70% and 67% respectively.Then,the conditional attribute set is reduced by using the theory of variable precision rough fuzzy set.After a chain correlation decision-making analysis which contained the possibility of spontaneous combustion and the severity of the internal-caused fire consequences in the stopes,9 decision-making rules for spontaneous fire with a confidence level above 55% were obtained,and 5 decision-making rules for fire consequences in the stopes were also obtained with a confidence level above 50%.According to the cause-effect chain,the two classes of rules were merged and integrated,and 30 combination rules of the cause and effect of the internal-caused fire in the stopes were obtained.Examples show that this method can analyzes the problems scientifically and comprehensively,with uncertain probability of chain-related correlation levels such as internal-caused fire in the stopes.It can also provide guidance for mine analysis and response to fires in the stopes to ensure sofety production.At the same time,this method also reduces the probability of internal-caused fire in the stope of some mine enterprises.

Key words: stope, internal-caused fire, rough fuzzy set, variant precision, knowledge reduction chain association, mine safety production

CLC Number: 

  • X43

Fig.1

Flow chart system modeling"

Table 1

Statistics of impact indicators of internal-caused fire in the stopes"

采场编号矿石含硫量/%矿石含碳量/%氧气浓度/%采场湿度/%矿石温度/℃矿石堆放时间/h采场人员数量/人采场空间面积 /m2采场矿层厚度 /m
1#41.213.319.26328.56277203.4
2#31.97.718.67125.282145706.1
3#22.412.820.18228.857117303.1
4#22.43.818.96222.84748907.6
5#23.32.320.98527.93941 0506.5
6#43.411.919.76827.25598804.5
7#35.14.419.37422.85971 0208.1
8#31.46.118.88126.56487306.8
9#28.24.318.36723.72738108.9
10#22.711.920.58427.361136304.7
11#22.47.818.36822.847114606.6
12#34.67.919.58222.267124103.7
13#32.412.319.28421.83768104.2
14#21.94.718.56422.43947707.3
15#35.74.919.17521.55889907.4
16#38.55.718.27526.87966905.9
17#31.38.719.88623.663145703.9
18#28.84.120.38128.24331 1305.2
19#28.89.118.47723.43397705.2
20#22.412.320.78727.266127504.3
21#37.38.318.48624.557125005.8
22#28.33.320.18627.64251 1805.1
23#37.113.419.56922.57968103.7
24#34.39.218.17826.69278406.1
25#33.93.819.87722.26999308.6
26#37.86.618.98524.96386706.8
27#46.011.119.56228.77176504.9
28#21.33.118.17522.85658207.8
29#37.24.719.67123.56661 1408.7
30#32.86.219.78223.761115204.9

Table 2

Results statistics of internal-caused fire in the stopes"

采场编号自燃起火概率/%自燃起火判定火灾后果概率/%火灾后果判定
不自燃概率自燃概率严重一般严重不严重
1#26.373.7倾向自燃19.252.428.4一般严重
2#38.661.4倾向自燃22.359.118.6一般严重
3#41.658.4倾向自燃69.117.513.4严重
4#66.133.9不易自燃17.920.661.5不严重
5#54.345.7不易自燃20.532.147.5不严重
6#24.175.9倾向自燃16.361.322.4一般严重
7#58.741.3不易自燃13.433.253.4不严重
8#43.156.9倾向自燃24.955.219.9一般严重
9#62.837.2不易自燃8.525.466.1不严重
10#43.156.9倾向自燃63.819.716.5严重
11#60.939.1不易自燃22.253.724.1一般严重
12#60.139.9不易自燃44.333.222.5严重
13#55.244.8不易自燃19.562.418.1一般严重
14#61.938.1不易自燃14.323.362.4不严重
15#51.848.2不易自燃19.430.949.7不严重
16#31.268.8倾向自燃20.157.122.8一般严重
17#61.438.6不易自燃47.233.719.1严重
18#56.443.6不易自燃20.227.552.3不严重
19#52.947.1不易自燃24.849.325.9一般严重
20#45.754.3倾向自燃64.221.614.2严重
21#40.959.1倾向自燃17.758.823.5一般严重
22#52.347.7不易自燃21.929.548.6不严重
23#41.858.2倾向自燃25.057.617.4一般严重
24#34.765.3倾向自燃24.147.728.2一般严重
25#57.342.7不易自燃21.331.547.2不严重
26#42.857.2倾向自燃21.158.420.5一般严重
27#27.672.4倾向自燃21.355.922.8一般严重
28#61.738.3不易自燃13.822.63.7不严重
29#51.248.8不易自燃21.131.147.8不严重
30#63.336.7不易自燃50.930.418.7严重

Table 3

Rough fuzzy knowledge system of spontaneous combustion"

采场

U

条件属性C1决策属性D1决策隶属度
c1c2c3c4c5c6d1不易自燃倾向自燃
n1倾向自燃0.2630.737
n2倾向自燃0.3860.614
n3倾向自燃0.4160.584
n4不易自燃0.6610.339
n5不易自燃0.5430.457
n6倾向自燃0.2410.759
n7不易自燃0.5870.413
n8倾向自燃0.4310.569
n9不易自燃0.6280.372
n10倾向自燃0.4310.569
n11不易自燃0.6090.391
n12不易自燃0.6010.399
n13不易自燃0.5520.448
n14不易自燃0.6190.381
n15不易自燃0.5180.482
n16倾向自燃0.3120.688
n17不易自燃0.6140.386
n18不易自燃0.5640.436
n19不易自燃0.5290.471
n20倾向自燃0.4570.543
n21倾向自燃0.4090.591
n22不易自燃0.5230.477
n23倾向自燃0.4180.582
n24倾向自燃0.3470.653
n25不易自燃0.5730.427
n26倾向自燃0.4280.572
n27倾向自燃0.2760.724
n28不易自燃0.6170.383
n29不易自燃0.5120.488
n30不易自燃0.6330.367

Table 4

Rough fuzzy knowledge system of fire consequence"

采场U条件属性C2决策属性D2决策隶属度
c2c3c7c8c9d2严重一般严重不严重
n1一般严重0.1920.5240.284
n2中厚一般严重0.2230.5910.186
n3严重0.6910.1750.134
n4不严重0.1790.2060.615
n5中厚不严重0.2050.3210.475
n6一般严重0.1630.6130.224
n7不严重0.1340.3320.534
n8中厚一般严重0.2490.5520.199
n9不严重0.0850.2540.661
n10严重0.6380.1970.165
n11中厚一般严重0.2220.5370.241
n12严重0.4430.3320.225
n13一般严重0.1950.6240.181
n14不严重0.1430.2330.624
n15不严重0.1940.3090.497
n16中厚一般严重0.2010.5710.228
n17严重0.4720.3370.191
n18中厚不严重0.2020.2750.523
n19中厚一般严重0.2480.4930.259
n20严重0.6420.2160.142
n21中厚一般严重0.1770.5880.235
n22中厚不严重0.2190.2950.486
n23一般严重0.250.5760.174
n24中厚一般严重0.2410.4770.282
n25不严重0.2130.3150.472
n26中厚一般严重0.2110.5840.205
n27一般严重0.2130.5590.228
n28不严重0.1380.2250.637
n29不严重0.2110.3110.478
n30严重0.5090.3040.187

Table 5

Rough membership degree of the spontaneous combustion knowledge system"

等价类决策类等价类决策类
F1F2F1F2
X100.740X80.6090
X200.652X90.6160
X300.565X100.5220
X40.6360X110.5290
X50.5430X1200.582
X60.5480X130.6170
X700.577

Table 6

Rough membership degree of the fire consequence knowledge system"

等价类决策类等价类决策类
F1F2F3F1F2F3
Y100.5790Y5000.495
Y200.5720Y6000.495
Y30.65700Y700.5350
Y4000.634Y80.47500

Table 7

β-reduction probability decision rules of spontaneous combustion"

规则支持数置信度/%
if矿石含硫量=高and矿石含碳量=高and矿石温度=高and矿石堆放时间=中then采场矿石=倾向自燃374.0
if矿石含硫量=中and矿石含碳量=中and矿石温度=中and矿石堆放时间=长then采场矿石=倾向自燃365.2
if矿石含硫量=低and矿石含碳量=高and矿石温度=高and矿石堆放时间=中then采场矿石=倾向自燃356.5
if矿石含硫量=低and矿石含碳量=低and矿石温度=低and矿石堆放时间=短then采场矿石=不易自燃363.6
if矿石含硫量=中and矿石含碳量=中and矿石温度=中and矿石堆放时间=中then采场矿石=倾向自燃357.7
if矿石含硫量=低and矿石含碳量=中and矿石温度=低and矿石堆放时间=短then采场矿石=不易自燃160.9
if矿石含硫量=中and矿石含碳量=中and矿石温度=低and矿石堆放时间=中then采场矿石=不易自燃361.6
if矿石含硫量=中and矿石含碳量=高and矿石温度=低and矿石堆放时间=长then采场矿石=倾向自燃158.2
if矿石含硫量=低and矿石含碳量=低and矿石温度=低and矿石堆放时间=中then采场矿石=不易自燃161.7

Table 8

β-reduction probability decision rules of fire consequence"

规则支持数置信度/%
if氧气浓度=中and采场人员数量=中then采场内因火灾=一般严重557.9
if氧气浓度=低and采场人员数量=多then采场内因火灾=一般严重357.2
if氧气浓度=高and采场人员数量=多then采场内因火灾=严重365.7
if氧气浓度=低and采场人员数量=少then采场内因火灾=不严重463.4
if氧气浓度=低and采场人员数量=中then采场内因火灾=一般严重553.5

Table 9

Rules of internal-caused fire in the stopes"

知识系统编号规律支持数置信度/%

自燃起火

知识系统

Aif矿石含硫量=高and矿石含碳量=高and矿石温度=高and矿石堆放时间=中then采场矿石=倾向自燃374.0
Bif矿石含硫量=中and矿石含碳量=中and矿石温度=中and矿石堆放时间=长then采场矿石=倾向自燃365.2
Cif矿石含硫量=低and矿石含碳量=高and矿石温度=高and矿石堆放时间=中then采场矿石=倾向自燃356.5
Dif矿石含硫量=低and矿石含碳量=低and矿石温度=低and矿石堆放时间=短then采场矿石=不易自燃363.6
Eif矿石含硫量=中and矿石含碳量=中and矿石温度=中and矿石堆放时间=中then采场矿石=倾向自燃357.7
Fif矿石含硫量=中and矿石含碳量=中and矿石温度=低and矿石堆放时间=中then采场矿石=不易自燃361.6

火灾后果

知识系统

if氧气浓度=中and采场人员数量=中then采场内因火灾=一般严重557.9
if氧气浓度=低and采场人员数量=多then采场内因火灾=一般严重357.2
if氧气浓度=高and采场人员数量=多then采场内因火灾=严重365.7
if氧气浓度=低and采场人员数量=少then采场内因火灾=不严重463.4
if氧气浓度=低and采场人员数量=中then采场内因火灾=一般严重553.5
Chen Jianhong, Zheng Haili, Liu Zhenxiao, al et,2011.Rough sets of laneway supporting schemes evaluation system based on dominance relation[J].Journal of Central South University (Science and Technology),42(6):1698-1703.
Huang Yuejun,2000.Study on the spontaneous combustion of high temperature sulphride ores and its control technology[J].Non-ferrous Mining and Metallurgy,16(1):13-15.
Jian Lirong,2008.Facing the Heterozygous Uncertainty Decision-Making Rough Set Method and Its Application[M].Beijing:Science Press.
Li Mengmeng, Xu Weihua,2016.Rough fuzzy set of logical and operation of variable precisionand grade based on dominance relation[J].Journal of Frontiers of Computer Science and Technology,10(2):277-284.
Li Pengfei,2010.Internal fire in sulfide mine of Laochang mine and prevention[J].Popular Science&Teconology,(5):93-95.
Li Zijun,2006.Investigation on the Mechanism of Spontaneous Combustion of Sulphide Ores and the Key Technologies for Preventing Fire[D].ChangSha:Central South University.
Li Zijun, Gu Desheng, Wu Chao,2004.Dangerousness assessment of ore spontaneous combustion in high temperature high sulfur deposits[J].Metal Mine,(5):57-64.
Liu Tongming,2001.Data Mining Technology and Its Application[M].Beijing:National Defense Industry Press.
Liu Yong, Jian Lirong, Jeffrey F, al et,2013.Probabilistic decision method and application based on the hybrid model of grey clustering and variable precision rough fuzzy set[J].Journal of Industrial Engineering and Engineering Management,27(3):110-115,123.
Luo Kai, Wu Chao, Yang Fuqiang,2014.Management response system to ores spontaneous combustion based on dominance-based rough sets and grey target[J].Journal of Central South University(Science and Technology),45(1):224-230.
Mao Dan, Chen Yuanjiang,2008.Characteristic overview and analysis of spontaneous combustion of sulfide ores[J].Industrial Minerals and Processing,(1):34-38.
Wang Ling, Hu Pei,2009.Algorithms for knowledge acquisition in decision-making system based on rough sets theory andits positive analysis[J].Journal of Intelligence,28(3):144-147.
Wang Guoying,2001.Rough Sets Theory and Knowledge Acquisition[M].Xi'an:Xi'an Jiaotong University Press.
Wang Pinglong,1999.In site test and investigation on sulphide ore spontaneous ignition[J].Chemical Mineral and Processing,(5):8-11.
Wu C, Li Z J,2005.A simple method for predicting the spontaneous combustion potential of sulfide ores at ambient[J].Transaction of Mining and Metallurgy Institute,112(2):125-128.
Wu Shunxiang,2009.Gray Rough Set Model and Its Application[M].Beijing:Science Press.
Xu Chunming, Wu Chao, Chen Yuanjiang,2008.Grey system approach in application to the diction of spontaneous combustion of sulfide ore residue[J].Tomnal of Safety and Environment,8(4):125-127.
Yang Fuqiang,2011.Study on the Mechanism and Forecasting Technologies for Spontaneous Combustion of Sulfied Minerails in Metal Mines[D].Changsha:Central Sounth University.
Yuan Xiujiu, He Huacan,2006.Exploring judgment theorems and discernibility matrices useful in discovering valuable but hidden information from a certain class of decision tables[J].Journal of Northwestern Polytechnical University,24(5):604-608.
Zhang W X,2010.Incomplete information system and its optimal selection[J].Computer and Mathematics with Application,48(5):691-698.
Zhang Wenxiu, Qiu Guofang,2005.Based on Rough Sets of Uncertain Decision[M].Beijing:Tsinghua University Press.
陈建宏,郑海力,刘振肖,等,2011.基于优势关系的粗糙集的巷道支护方案评价体系[J].中南大学学报(自然科学版),42(6):1698-1703.
黄跃军,2000.高温高硫矿床矿石自燃性及防治技术研究[J].有色矿业,16(1):13-15.
菅利荣,2008.面向不确定性决策的杂合粗糙集方法及其应用[M].北京:科学出版社.
李蒙蒙,徐伟华,2016.优势关系下变精度与程度“逻辑且”粗糙模糊集[J].计算机科学与探索,10(2):277-284.
李鹏飞,2010.老厂矿的硫化矿内因火灾及其防治[J].大众科技,(5):93-95.
李孜军,2006.硫化矿石自燃机理及其预防关键技术研究[D].长沙:中南大学.
李孜军,古德生,吴超,2004.高温高硫矿床矿石自燃危险性的评价[J].金属矿山,(5):57-64.
刘同明,2001.数据挖掘技术及其应用[M].北京:国防工业出版社.
刘勇,菅利荣, Jeffrey F,等,2013.杂合灰色聚类与变精度粗糙模糊集的概率决策方法及应用[J].管理工程学报,27(3):110-115,123.
罗凯,吴超,阳富强,2014.基于优势关系粗糙集与灰靶决策的矿石自燃管理应对体系[J].中南大学学报(自然科学版),45(1):224-230.
毛丹,陈沅江,2008.硫化矿石堆氧化自燃全过程特征综述与分析[J].化工矿物与加工,(1):34-38.
汪凌,胡培,2009.基于粗糙集的决策系统知识获取算法及实证分析[J].情报杂志,28(3):144-147.
王国胤,2001.Rough集理论与知识获取[M].西安:西安交通大学出版社.
王坪龙,1999.硫化矿石自燃发火规律现场试验研究[J].化工矿物与加工,(5):8-11.
吴顺详,2009.灰色粗糙集模型及其应用[M].北京:科学出版社.
许春明,吴超,陈沅江,2008.硫化矿石堆自燃的灰色预测研究[J].安全与环境学报,8(4):125-127.
阳富强,2011.金属矿山硫化矿自然发火机理及其预测预报技术研究[D].长沙:中南大学.
袁修久,何华灿,2006.优势关系下的相容约简和下近似约简[J].西北工业大学学报,24(5):604-608.
张文修,仇国芳,2005.基于粗糙集的不确定决策[M].北京:清华大学出版社.
[1] Lulu XU,Qinli ZHANG,Ru FENG. Numerical Simulation of Backfill Strength Based on Optimization Results of Stope Structural Parameters [J]. Gold Science and Technology, 2021, 29(3): 421-432.
[2] Huaibin SU, Qinli ZHANG, Deming ZHANG, Changgen ZENG, Xiaojiang ZHU. Study on the Optimization of Stope Structure Parameters in the Large-scale Backfilling Mining of Rangjialong Silver Mine [J]. Gold Science and Technology, 2020, 28(4): 550-557.
[3] Guoyan ZHAO,Zhenyang LI,Juncheng DAI. Optimization Research on Stope Structural Parameters Based on Vague-RSM-AFSA Model [J]. Gold Science and Technology, 2019, 27(4): 497-504.
[4] Chuanchuan WAN,Guoliang CHEN,Gaoming ZHOU,Shibo YU,Lianku XIE,Xizhuo TANG. Optimation of Underground Stope Structure Parameters Based on Different Rockmass Stability Classification [J]. Gold Science and Technology, 2018, 26(6): 761-770.
[5] Jianhua HU,Qifan REN,Zhonghua QI,Jiwei ZHANG. Regress Optimize Model of Limit Exposure Area to Stope in Wohushan Iron Mine [J]. Gold Science and Technology, 2018, 26(4): 503-510.
[6] WU Hao, CHEN Bingrui, CHI Xiuwen, WANG Bo, XU Shida, JIANG Hongbo. Stability Analysis of Deep Stope Based on Regional Microseismic Activity [J]. Gold Science and Technology, 2018, 26(3): 325-333.
[7] KANG Qian,ZHANG Qinli,ZHANG Chuxuan,PU Chengzhi,JIANG Fuliang. Application of Ideal Point Method in Mining Stope Structural Parameters Optimization [J]. Gold Science and Technology, 2018, 26(1): 25-30.
[8] MENG Kun,LUO Zhouquan,QIN Yaguang. Study on the Stope Displacement Unstability Process Under Complex Mining Environment [J]. Gold Science and Technology, 2017, 25(2): 70-75.
[9] TANG Lizhong,DENG Lifan,JIAN Yinghua. Study on the Optimization of Structural Parameters of Sublevel Open Stopping with Subsequent Backfilling Mining [J]. Gold Science and Technology, 2016, 24(2): 8-13.
[10] LONG Keming,WANG Liguan. Optimization of Stope Structural Parameters Based on ANSYS-R Method [J]. Gold Science and Technology, 2015, 23(6): 81-86.
[11] WAN Xiaoheng,WANG Xinmin,ZHU Yangya,JIANG Zhiliang,CHEN Qiusong. Optimization of the Stope Structural Parameters Based on Empowerment Combination TOPSIS [J]. Gold Science and Technology, 2014, 22(5): 69-73.
[12] QIU Fusheng,YIN Chunwei,LIU Chengjie,WANG Jinyan,WANG Shaoqing. Design and Application of the New Type Remote Control Scraper-drawing Machine [J]. Gold Science and Technology, 2014, 22(2): 67-69.
[13] BAI Fuxin,WANG Shangong,ZHANG Yonglin,AN Zhihai. The Application of Mining Methods of Mutation Orebody in Xinhui Gold Mine [J]. J4, 2011, 19(3): 68-69.
[14] ZHANG Ai, WANG Li, WANG Xiao-Jing. Discussing on Problems about Designing and Construction Technology of Static Shrinkage Method [J]. J4, 2009, 17(1): 49-52.
[15] CAO Guorong. Reasonable Underground Filling Strengthening Surface Protection [J]. J4, 2005, 13(6): 27-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Longwei, YANG Xingke, GAO Yaning, HE Hujun, CHU Nana, ZHANG Zhengmin. Three-dimensional Model and Location Prediction of Changgou Gold Deposit in Northern Hanyin of South Qinling Mountains[J]. Gold Science and Technology, 2018, 26(3): 270 -278 .
[2] Chao YANG,Lijie GUO,Jie WANG,Caixing SHI,Wenyuan XU. Study and Application of Large Fill-times-line Pressure Filling Technology in a Gold Mine[J]. Gold Science and Technology, 2019, 27(1): 89 -96 .
[3] Rui TIAN,Haidong MENG,Shijiang CHEN,Chuangye WANG,Dening SUN,Lei SHI. Comparative Study on Three Rockburst Prediction Models of Intensity Classi-fication Based on Machine Learning[J]. Gold Science and Technology, 2020, 28(6): 920 -929 .
[4] Yuhua XIE,Hua GAO,Zhe ZHANG,Liang YANG,Xinxing KE,Xiaomin LIU,Jianbiao LUO,Qi LIU,Kunlin XU,Jishun LIU,Zhilin WANG,Hua KONG,Biao LIU. Ore-forming Fluid Characteristics and Material Source of Gold Deposits in Tongdao County,Hunan Province:Evidence from Fluid Inclusions and H-O-S Isotopes[J]. Gold Science and Technology, 2021, 29(1): 74 -89 .
[5] SHENGJianlong, ZHAIMingyang. Reliability Analysis and Sampling Method Comparison of Jinjiling Rock Slope Based on Stochastic Response Surface Method[J]. Gold Science and Technology, 2018, 26(3): 297 -304 .
[6] Yunzhong QIN, Haijun SONG. Prospecting Model and Metallogenic Prediction of Yandan-Yantang Gold Deposit in Leye County,Guangxi[J]. Gold Science and Technology, 2020, 28(3): 317 -327 .
[7] Jinshan HU, Fulin HU, Jingang LIU, Ning LI, Guoliu HU, Guoguang WANG. Deep Prospecting and Mineralization Characteristics of the Yinshan Copper Polymetallic Deposit in Jiangxi[J]. Gold Science and Technology, 2020, 28(5): 688 -700 .
[8] . Experimental Research on Application of Mixed Aggregate of Mining Waste Rock and Tailings in Downward Layered Approach and Cemented Filling Mining Method HE Jianyuan1,LI Hongye1,GAO Qian2,YIN Shenghua2[J]. Gold Science and Technology, 2021, 29(4): 564 -572 .
[9] Zhenghua TAN,Yang WEN,Liguan WANG,Guotai LI. Optimization Method for Preparation of Underground Mining Plan Based on Critical Chain[J]. Gold Science and Technology, 2021, 29(4): 602 -611 .
[10] Shibo YU, Xiaocong YANG, Ye YUAN, Zhixiu WANG. Research on Destress Effect of Ground Pressure Control for the Time-space Mining Sequence at Depths[J]. Gold Science and Technology, 2020, 28(3): 345 -352 .