img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (6): 786-791.doi: 10.11872/j.issn.1005-2518.2020.06.158

Previous Articles     Next Articles

Research Progress of Treating Arsenic-containing Acid Mine Drainage by Biomineralization

Cailong SHEN1,2(),Guangji ZHANG1,2(),Chao YANG1,2   

  1. 1.CAS Key Laboratory of Green Process and Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China
    2.School of Chemical Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2020-09-08 Revised:2020-10-30 Online:2020-12-31 Published:2021-01-29
  • Contact: Guangji ZHANG E-mail:clshen@ipe.ac.cn;gjzhang@ipe.ac.cn

Abstract:

Research progress on the biomineralization technologies of sulfate-reducing bacteria (SRB) and iron-oxidizing bacteria (IOB) for removing arsenic from acid mine drainage (AMD) is reviewed. Although there are numerous studies on the removal of arsenic from AMD using SRB,there remain several challenges in the implementation of this remediation technique on a large scale. These challenges include the choosing of carbon sources,the low-level resistance of SRB to arsenic and the high requirement for reactors. Removing arsenic from AMD using IOB is still at the stage of laboratory research given that the stability of different minerals formed during the biomineralization is not very clear. However,this remediation technique has advantages in accelerating the oxidation of As(Ⅲ),the high-level resistance of IOB to arsenic and the low cost for reactors,which has a promising prospect.

Key words: acid mine drainage, sulfate-reducing bacteria, iron-oxidizing bacteria, biomineralization, arsenic contamination, arsenic removal technology

CLC Number: 

  • X703

Fig.1

Schematic diagram of treating AMD by SRB"

Fig.2

Schematic diagram of chemical structure of schwertmannite"

1 Rodriguez-Lado L,Sun G F,Berg M,et al.Groundwater arsenic contamination throughout China[J].Science,2013,341(6148):866-868.
2 Flora S J S.Handbook of Arsenic Toxicology[M].Holland:Elsevier,2015.
3 梁宗林,秦亚玲,王佩,等.云南省蒙自酸性矿山排水微生物群落结构和功能[J].生物工程学报,2019,35(11):2035-2049.
Liang Zonglin,Qin Yaling,Wang Pei,et al.Microbial community structure and function in acid mine drainage from Mengzi,Yunnan Province[J].Chinese Journal of Biotechnology,2019,35(11):2035-2049.
4 肖细元,陈同斌,廖晓勇,等.中国主要含砷矿产资源的区域分布与砷污染问题[J].地理研究,2008,27 (1):201-212.
Xiao Xiyuan,Chen Tongbin,Liao Xiaoyong,et al.Regional distribution of arsenic contained minerals and arsenic pollution in China[J].Geographical Research,2008,27(1):201-212.
5 Iakovleva E,Mäkilä E,Salonen J,et al.Acid mine drainage(AMD) treatment:Neutralization and toxic elements removal with unmodified and modified limestone[J].Ecological Engineering,2015,81:30-40.
6 张明江,刘兴宇,李益斌,等.一种尾矿库重金属污染的微生物修复方法:CN109967519A[P].2019-07-05.
Zhang Mingjiang,Liu Xingyu,Li Yibin,et al.A microbial method for the remediation of heavy metal pollution in tailing pond:CN109967519A[P].2019-07-05.
7 余飞,万俊锋,赵雅光,等.硫酸盐还原菌SRB除砷的影响因素[J].环境工程学报,2016,10(7):3898-3904.
Yu Fei,Wan Junfeng,Zhao Yaguang,et al.Factors influencing arsenic removal by sulfate-reducing bacteria[J].Chinese Journal of Environmental Engineering,2016,10(7):3898-3904.
8 Battaglia-Brunet F,Crouzet C,Burnol A,et al.Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor[J].Water Research,2012,46(12):3923-3933.
9 Lengke M F,Sanpawanitchakit C,Tempel R N.The oxidation and dissolution of arsenic-bearing sulfides[J].The Canadian Mineralogist,2009,47(3):593-613.
10 Oremland R S,Stolz J F.The ecology of arsenic[J].Science,2003,300(5621):939-944.
11 Nancucheo I,Johnson D B.Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria[J].Microbial Biotechnology,2012,5(1):34-44.
12 Hoeft S E,Kulp T R,Stolz J F,et al.Dissimilatory arsenate reduction with sulfide as electron donor:Experiments with mono lake water and isolation of strain MLMS-1,a chemoautotrophic arsenate respirer[J].Applied and Environmental Microbiology,2004,70(5):2741-2747.
13 Wilkin R,Wallschläger D,Ford R.Speciation of arsenic in sulfidic waters[J].Geochemical Transactions,2003,4(1):1-7.
14 Altun M,Sahinkaya E,Durukan I,et al.Arsenic removal in a sulfidogenic fixed-bed column bioreactor[J].Journal of Hazardous Materials,2014,269:31-37.
15 De Matos L P,Costa P F,Moreira M,et al.Simultaneous removal of sulfate and arsenic using immobilized non-traditional SRB mixed culture and alternative low-cost carbon sources[J].Chemical Engineering Journal,2018,334:1630-1641.
16 狄军贞,李拓达,赵微.硫酸盐还原菌利用不同生物质碳源对酸性矿山废水的处理[J].煤炭学报,2019,44(6):1915-1922.
Di Junzhen,Li Tuoda,Zhao Wei.Treatment acid mine drainage by sulfate reducing bacteria using different biomass carbon sources[J].Journal of China Coal Society,2019,44(6):1915-1922.
17 Zacarias-Estrada O L,Ballinas-Casarrubias L,Montero-Cabrera M E,et al.Arsenic removal and activity of a sulfate reducing bacteria-enriched anaerobic sludge using zero valent iron as electron donor[J].Journal of Hazardous Materials,2020,384:121392.
18 Briones-Gallardo R,Escot Espinoza V M,Cervantes González E.Removing arsenic and hydrogen sulfide production using arsenic-tolerant sulfate-reducing bacteria[J].International Journal of Environmental Science and Technology,2016,14(3):609-622.
19 祝传静,孙晶晶,黄建洪,等.基于硫酸盐还原菌的气提内循环反应器处理酸性矿山废水[J].环境工程学报,2020,14(4):970-976.
Zhu Chuanjing,Sun Jingjing,Huang Jianhong,et al.Treatment of acid mine drainage by a gas stripping internal circulation reactor with sulfate reducing bacteria[J].Chinese Journal of Environmental Engineering,2020,14(4):970-976.
20 修伟.耐砷铁氧化菌的除砷特征及其机理研究[D].北京:中国地质大学(北京),2016.
Xiu Wei.Characteristics and Mechanisms of Arsenic Bioremediation by Arsenic-Resistant Fe(Ⅱ)-oxidizing Baterial in Aqueous Environment[D].Beijing:China University of Geosciences(Beijing),2016.
21 王敏.生物成因黄铁矾合成的影响机制及其在酸性矿山废水治理中的应用研究[D].南京:南京农业大学,2011.
Wang Min.The Mechanism of Jarosite Formation During Ferrous Iron Oxidation by Acidithiobacillus Ferrooxidans and Their Applications to Acid Mine Drainage Treatment[D].Nanjing:Nanjing Agricultural University,2011.
22 Vithana C L.Assessment and Behaviour of Secondary Iron(Ⅲ)Minerals in Acid Sulphate Soil Materials[D].New South Wales:Southern Cross University,2014.
23 周立祥.生物矿化:构建酸性矿山废水新型被动处理系统的新方法[J].化学学报,2017,75(6):552-559.
Zhou Lixiang.Biomineralization: A pivotal process in developing a novel passive treatment system for acid mine drainage[J].Acta Chimica Sinica,2017,75(6):552-559.
24 Qiao X X,Liu L L,Shi J,et al.Heating changes bio-schwertmannite microstructure and arsenic(Ⅲ) removal efficiency[J].Minerals,2017,7(1):9.
25 Jin D C,Wang X M,Liu L L,et al.A novel approach for treating acid mine drainage through forming schwertmannite driven by a mixed culture of Acidiphilium multivorum and Acidithiobacillus ferrooxidans prior to lime neutralization[J].Journal of Hazardous Materials,2020,400:123108.
26 郭爱莲,孙先锋,朱宏莉,等.He-Ne激光、紫外线诱变氧化亚铁硫杆菌及耐砷菌株的选育[J].光子学报,1999,28(8):718-721.
Guo Ailian,Sun Xianfeng,Zhu Hongli,et al.The mutagenesis of Thiobacillus ferrooxidans by He-Ne laser, ultra violet and the breeding of arsenate-tolerant mutant[J].Acta Photonica Sinica,1999,28(8):718-721.
27 方芳,钟宏,江放明,等.嗜酸氧化亚铁硫杆菌的耐砷驯化与浸矿能力[J].中南大学学报(自然科学版), 2013(10):3977-3983.
Fang Fang,Zhong Hong,Jiang Fangming,et al.Domestication for arsenic-tolerant ability and bioleaching of Acidithiobacillus ferrooxidans[J].Journal of Central South University (Science and Technology),2013(10):3977-3983.
28 Asta M P,Cama J,Martínez M,et al.Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications[J].Journal of Hazardous Materials,2009,171(1):965-972.
29 Burton E D,Bush R T,Johnston S G,et al.Sorption of arsenic(V)and arsenic(Ⅲ)to Schwertmannite[J].Environmental Science and Technology,2009,43(24):9202-9207.
30 Zhang Z,Bi X,Li X T,et al.Schwertmannite:Occurrence,properties,synthesis and application in environmental remediation [J].RSC Advances,2018,8(59):33583-33599.
31 Zhao Z X,Jia Y F,Xu L Y,et al.Adsorption and heterogeneous oxidation of As(Ⅲ)on ferrihydrite[J].Water Research,2011,45(19):6496-6504.
32 Hug S J,Leupin O.Iron-catalyzed oxidation of arsenic(Ⅲ)by oxygen and by hydrogen peroxide:pH-dependent formation of oxidants in the fenton reaction[J].Environmental Science and Technology,2003,37(12):2734-2742.
[1] Xiaojian GUO,Huan HU,Yiqing LIU,Yanru LIANG. Visual Analysis of Green Mine Research in China Based on CiteSpace [J]. Gold Science and Technology, 2020, 28(2): 203-212.
[2] Yixiao HAO,Xuefeng ZHENG,Yiting XIAO,Haoliang WANG,Xiangyang LI. Measurement of Bubble Size Distribution in Surface Aeration Reactor [J]. Gold Science and Technology, 2020, 28(2): 188-194.
[3] Shaoyuan SHI,Junqiang WANG,Yongchun WANG,Guodong WANG,Manman ZHANG,Zhi SUN. Research and Practice of Deep Purification and Desalination Reuse Technology for Complex Gold Wastewater [J]. Gold Science and Technology, 2018, 26(4): 535-542.
[4] CHEN Yajing,YANG Hongying,TONG Linlin,JIN Zhenan. Study on Arsenic Removal from Bacterial Oxidation of Liquid Arsenical Ores and Stability of Arsenic Calcium Residue [J]. Gold Science and Technology, 2018, 26(1): 124-129.
[5] SONG Yonghui,YAO Di,ZHANG Shan,TIAN Yuhong,LAN Xinzhe. Study on the Treatment of Cyanide Wastewater by Three-dimensional Electrode [J]. Gold Science and Technology, 2017, 25(5): 116-121.
[6] JI Changqing. An Overview on the Forms and Remediation of Aquatic Arsenic [J]. Gold Science and Technology, 2016, 24(3): 111-115.
[7] SUN Yanhui. Application of Hydrotalcite-like Compounds in Water Treatment [J]. Gold Science and Technology, 2015, 23(3): 99-104.
[8] LIU Ya,LV Cuicui,DING Jian,QIAN Peng,LI Qingchun,YE Shufeng,CHEN Yunfa. Experimental Study on Flocculation of the Cyanide Tailings [J]. Gold Science and Technology, 2013, 21(6): 82-89.
[9] LI Shixiong,LI Yong,XU Zhongmin,LIU Aixin. Sodium Metabisulfite Decomposition of Cyanide Gold Production Wastewater Treatment by Electro-flocculation Method [J]. J4, 2012, 20(3): 66-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAN Jie, QIN Ze-Li, XIE Wen-Bing, CA Bang-Yong. [J]. J4, 2010, 18(4): 22 -26 .
[2] SONG He-Min, FENG Chi-Li, DING Xian-Hua. Geological-Geochemical Charicteristics and Prospecting Direction of Jiaojiekou Mining Area, North Part of Taihang Mountain[J]. J4, 2010, 18(3): 54 -58 .
[3] LI Chu-Fang, XU Yong-An, CHAO Yin-Yin, WANG Mei-Juan, ZHANG Dai, LIU Jun, SUN Liang-Liang. Looking for Strata Bound Type Gold Deposit in Liaodong Metallogenic Belt[J]. J4, 2010, 18(3): 59 -62 .
[4] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[5] CHEN Hua-Dun. [J]. J4, 2010, 18(4): 50 -53 .
[6] CUI Ting-Jun, DAI Ke-Sai, PENG Yong, FU Xing. Discussion on the Geological Characteristics and Metallogenic Regularity of the  Southern Edge of Qaidam Basin Gold Metallogenic Belt in Qinghai Province[J]. J4, 2010, 18(3): 63 -67 .
[7] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[8] SU Jian-Hua, LIU Shu-Lin. Study of Gold Extraction from Tail Solution with High Acid Content and Low Concentration[J]. J4, 2010, 18(3): 72 -75 .
[9] WANG Da-Beng, SONG Bing-Jian, HUI Ku-Meng. The Application of High Power IP Method for Searching Concealed Metallic Mine in Beishuiquan,Liaoning Province[J]. J4, 2010, 18(3): 76 -78 .
[10] LIU Qing-Guang, GAO Hai-Feng, HUANG Suo-Yang. The Application of PDA in Geology Department of Jiaojia Gold Mine[J]. J4, 2010, 18(3): 79 -82 .