img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (5): 771-777.doi: 10.11872/j.issn.1005-2518.2020.05.158

• Mining Technology and Mine Management • Previous Articles     Next Articles

Comparison of Grinding Effect Between Steel Section and Steel Ball During Fine Grinding Stage of Ball Mill

Xudong WANG1(),Qingfei XIAO1,2(),Qian ZHANG1,Sen YANG1,Shuai MA1   

  1. 1.School of Land and Resources Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    2.State Key Laboratory of Mineral Processing Science and Technology,Beijing 100070
  • Received:2019-09-23 Revised:2020-06-12 Online:2020-10-31 Published:2020-11-05
  • Contact: Qingfei XIAO E-mail:852911345@qq.com;13515877@qq.com

Abstract:

The particle size of the grinding products in the fine grinding section of a domestic mineral processing plant is uneven,and there are more coarse-grained and over-fine-grained grades.At the same time,the content of the grinding fineness -0.074 mm does not meet the standard.According to the current mill grinding process,combined with the nature of the ore itself in the concentrator,the grinding quality is improved through the grinding process.This paper uses the international standard sieve for particle size screening of the ore sampled uniformly,combined with the spherical diameter semi-theoretical formula to formulate the grinding plan,compare the grinding results,evaluate and select the best grinding plan.Laboratory test results and data analysis show that the grinding media system is Φ45×50∶Φ35×40∶Φ30×35∶Φ25×30=30∶20∶20∶30. Compared with the steel ball plan and the current plant plan,the overall steel section plan has an over-coarse level of 0.10 mm and a yield reduction of 0.73 percentage points and 5.42 percentage points,respectively,and an over-pulverization level of 0.010 mm and a yield reduction of 2.51 percentage points and 0.77 percentage points,respectively.The grinding fineness -0.074 mm content has increased by 1.75 percentage points and 5.33 percentage points respectively.The intermediate easy-selection grade 0.100~0.038 mm yield has increased by 1.96 percentage points and 5.57 percentage points,respectively,and the grinding technology efficiency has been improved by 3.54 percentage points and 8.14 percentage points,mill q-200 increased by 3.15% and 10.24%.According to the comparison of various grinding indexes,it can be concluded that the grinding method of the steel section in the grinding process is mainly based on the grinding and peeling effect,supplemented by the impact effect,which can effectively reduce the content of coarse-grained and super-fine-grained grades,and improve the qualified grain.The level of content reduces the difficulty of flotation.The increase of the efficiency of grinding technology shows the improvement of the quality of grinding products,and the increase of the mill q-200 shows the improvement of the production capacity of the mill’s unit effective volume.The above conclusions indicate that the steel segment is more suitable for fine grinding process,it improve the quality of grinding products,the production capacity of the mill and the efficiency of the enterprise.

Key words: fine grinding, grinding products, grinding fineness, over-crushing, steel section, steel ball

CLC Number: 

  • TD952

Table 1

Particle size composition of mill feed"

级别/mm级别产率/%筛上累计产率/%筛下累计产率/%
合计100.00
+0.9000.410.41100.00
-0.900+0.4501.812.2299.59
-0.450+0.30011.4213.6497.78
-0.300+0.20020.5134.1586.36
-0.200+0.15014.8549.0065.85
-0.150+0.10024.7274.7251.00
-0.100+0.0748.0481.7626.28
-0.074+0.0389.8591.6118.24
-0.038+0.0193.5395.148.39
-0.019+0.0102.4697.604.86
-0.0102.40100.002.40

Table 2

Particle size composition of mill discharge"

级别/mm级别产率/%筛上累计产率/%筛下累计产率/%
合计100.00
+0.9000.170.17100.00
-0.900+0.4500.630.8099.86
-0.450+0.3006.217.0199.20
-0.300+0.20015.8822.8992.99
-0.200+0.1506.4629.3577.11
-0.150+0.10016.8946.2470.65
-0.100+0.07423.9770.2153.76
-0.074+0.03810.9681.1729.79
-0.038+0.0195.9887.1518.83
-0.019+0.0106.6193.9612.85
-0.0106.24100.006.24

Fig.1

Logarithmic curves of negative cumulative particle size characteristics of mill feed and mill discharge"

Table 3

Grinding conditions of laboratory"

磨机尺寸/(mm×mm)磨矿方式球磨机转速率/%磨矿时间/min球荷重量/kg给矿量/kg磨矿介质制度
200×240湿磨748111变量

Table 4

Grinding schemes of laboratory"

方案介质配比平均球径/mm
全面钢段方案45×50∶35×40∶30×35∶25×30=30∶20∶20∶30-
替代钢段方案45×50∶35×40∶25×30=30∶40∶30-
钢球方案Ф50∶Ф40∶Ф30=30∶40∶3040.00
现厂方案Ф60∶Ф50∶Ф40∶Ф30=25∶25∶25∶2545.00
偏大方案Ф60∶Ф50∶Ф40=30∶40∶3050.00
偏小方案Ф40∶Ф30=50∶5035.00

Table 5

Evaluation index of grinding effect"

序号评价指标
1+0.100 mm粗级别产率(γ+0.10mm,%)
2-0.074 mm级别产率(γ-0.074mm,%)
3中间易选级别产率(γ0.10-0.038mm,%)
4-0.010 mm过粉碎级别产率(γ-0.010mm,%)
5磨矿技术效率(,%)
6磨机-0.074 mm利用系数(q-200,t/m3·h-1

Fig.2

Yield comparison of γ+0.100 mm(a), γ-0.010 mm(b), γ-0.074 mm(c), γ-0.100+0.038 mm(d)"

Fig.3

Technical efficiency of each scheme"

Fig.4

Milling machine utilization coefficient of each scheme"

1 曹亦俊,段希祥. 粗磨球磨机球径精确化研究[J]. 有色金属(选矿部分),2001,53(3):24-26,30.
Cao Yijun, Duan Xixiang.Study on the precision of the ball diameter of coarse grinding ball mill[J]. Nonferrous Metals(Mieral Processing),2001,53(3):24-26,30.
2 肖庆飞,康怀斌,张红华,等. 优化球荷特性提高磨矿产品粒度均匀性的研究[J]. 矿产保护与利用,2015(5):25-28.
Xiao Qingfei,Kang Huaibin,Zhang Honghua,et al.Optimization of ball loading characteristics to improve the uniformity of grain size of grinding products[J].Conservation and Utilization of Mineral Resources,2015(5):25-28.
3 段希祥.我国粗磨球磨机钢球尺寸状况的分析[J].矿冶工程,1998,18(1):23-26.
Duan Xixiang.Analysis of the size of the steel ball of coarse grinding ball mill in China[J].Mining and Metallurgical Engineering,1998,18(1):23-26
4 常富强,段德华,宋龚.生产中提高球磨机磨矿效率的方法[J].现代矿业,2011,28(4):81-84.
Chang Fuqiang,Duan Dehua,Song Gong.Method for improving the grinding efficiency of ball mill in production[J].Modern Mining,2011,28(4):81-84.
5 毛益平,陈炳辰,高继森.球磨机有功功率和磨矿效率影响因素研究[J].矿业工程,2000,20(4):48-50.
Mao Yiping,Chen Bingchen,Gao Jisen.Research on factors affecting the active power and grinding efficiency of ball mill[J].Mining and Metallurgical Engineering,2000,20(4):48-50.
6 姚光前.球磨机转速、磨球尺寸对磨矿效率的影响[J].化工矿物与加工,2015,44(7):18-20.
Yao Guangqian.Influence of ball mill speed and grinding ball size on grinding efficiency[J].Industrial Minerals and Processing,2015,44(7):18-20.
7 Xiao Q F,Kang H B,Li B,et al.Optimization study to the ratio of primeval ball loading in 4.0×6.0 m overflow ball mill of Yingezhuang gold mine[J].Aasia procedia,2014,7:14-19.
8 邓东峰.某大型铜矿球磨机提高磨矿效率的实践研究[J].有色金属(选矿部分),2016,68(2):65-68.
Deng Dongfeng.Practical study on improving grinding efficiency of a large copper ore ball mill[J].Nonferrous Metals(Mineral Processing Section),2016,68(2):65-68.
9 高洋,刘志斌,杨德生,等. 提高黄金选矿厂磨矿效率的半工业试验研究[J].矿冶,2013(1):26-29.
Gao Yang,Liu Zhibin,Yang Desheng,et al.Semi-industrial experimental study on improving grinding efficiency of gold concentrator[J].Mining and Metallurgy,2013(1):26-29.
10 谢敏雄,李政要,林属,等.提高选矿厂磨矿系统效能的技术改造及应用研究[J].黄金科学技术,2012,20(6):65-68.
Xie Minxiong,Li Zhengyao,Lin Shu,et al.Technical transformation and application research to improve the efficiency of the grinding system of the concentrato[J].Gold Science and Technology,2012,20(6):65-68.
11 黄尚明. 提高自磨机效率的措施[J]. 矿业工程,2007,5(6):47-48.
Huang Shangming.Measures to improve the efficiency of self-grinding mill[J]. Mining Engineering,2007,5(6):47-48.
12 段希祥,杨志惠.提高矿石细磨效率的途径研究[J].云南冶金,1989(4):14-18.
Duan Xixiang,Yang Zhihui.Research on ways to improve the fine grinding efficiency of ore[J].Yunnan Metallurgy,1989(4):14-18.
13 段希祥.新型细磨介质应用研究[J].昆明理工大学学报,1998(6):11-15.
Duan Xixiang.Research on application of new fine grinding media[J].Journal of Kunming University of Science and Technology,1998(6):11-15.
14 钟旭群.介质配比对磨矿效果影响的试验研究[J].矿冶,2014,23(5):24-26.
Zhong Xuqun.Experimental study on the effect of medium ratio on grinding effect[J].Mining and Metallurgy,2014,23(5):24-26.
15 于福家,韩跃新.磨机细磨介质研究[J].金属矿山. 1997(3):29-31.
Yu Fujia,Han Yuexin.Mill fine grinding medium research[J].Metal Mine,1997(3):29-31.
16 Bryson M A W.Mineralogical control of minerals processing circuit design[J].Journal of Southern African In- stitute of Mining and Metallurgy,2004,104(6):301-310.
17 陈炳晨.磨矿原理[M]. 北京:冶金出版社,1989:23-25.
Chen Bingchen.Grinding principle[M]. Beijing:Metallurgical Press,1989:23-25.
18 Zhang H J,Liu J T,Cao Y J,et al. Effects of particle size on lignite reverse flotation kinetics in the pres- ence of sodium chloride[J].Powder Technology,2010(246):658-663.
19 刘磊,曹进成,吕良,等. 不同破碎方式下磨矿技术效率[J].中国有色金属学报,2015,25(9):2565-2574.
Liu Lei,Cao Jincheng,Lü Liang,et al.Grinding technical efficiency under different crushing methods[J].The Chinese Journal of Nonferrous Metals,2015,25(9):2565-2574.
20 王建中,段宇东.尖山选厂球磨机利用系数攻关的探索与实践[J]. 金属矿山,2003(9):56-57.
Wang Jianzhong,Duan Yudong.Exploration and practice of tackling the utilization coefficient of ball mill in Jianshan Plant[J]. Metal Mine,2003(9):56-57.
[1] Fubo LI, Qingfei XIAO, Yinqi HUANG, Qian ZHANG, Xudong WANG. Experimental Study on Optimizing the Media System of Large-scale Ball Mill in a Copper Mine in Jiangxi Province [J]. Gold Science and Technology, 2020, 28(4): 603-609.
[2] LEI Xiaoli,LI Jinquan,XU Zhongmin,DUAN Xixiang. Application of the Technology of Accurate Ball Loading and Addition in Concentrating Mill of Jinchiling Gold Mine [J]. Gold Science and Technology, 2015, 23(6): 87-91.
[3] CAO Chengchao. Research on Flotation Test at a Certain Mine in Xinjiang [J]. Gold Science and Technology, 2014, 22(3): 70-76.
[4] LIN Honghan. An Experimental Research on Resource Utilization of Gold Copper Waste Rock [J]. Gold Science and Technology, 2014, 22(3): 77-81.
[5] ZHANG Wenbo,DONG Changping,CHEN Qinggen,LI Xiaowei. Comprehensive Recovery of Copper,Gold and Sulfide from Copper-Gold Concentrates Using Wet Method with Ultra-fine Grinding Technology [J]. Gold Science and Technology, 2013, 21(5): 67-70.
[6] YANG Jian,WANG Jianping. The Production Practice about Improving Grinding Fineness of Gold Concentrate in Cyanide System Stage [J]. Gold Science and Technology, 2013, 21(4): 91-94.
[7] BAI Pengcheng,HE Ye,CHEN Fangfang,LI Keke. Experimental Study on Cyanide Leaching Efficiency Influenced by Fineness of Grinding and Secondary Grinding and Leaching [J]. Gold Science and Technology, 2012, 20(5): 71-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Shou-Bin, XU Xiao-Cui, ZHANG Zhen-Beng. Study on Flotation Frother Used in Sanshandao Gold Mine,Shandong Province[J]. J4, 2011, 19(1): 61 -63 .
[2] ZHANG YinFei. Discussion on M ineralization Regularity of the Eighth Ore Body of Shuangwang Gold Deposit, Shaanx i Prov ince[J]. J4, 2008, 16(1): 35 -38 .
[3] ZHAO hai, CHUI xuewu, XUN lunxian. Discussion On Geology and Isotope Characters of J iusangou Gold Deposit  in Wangq ing, J ilin Prov ince[J]. J4, 2008, 16(1): 48 -51 .
[4] LI Hong-Jie, CU Jing-Ji, MA Shu-Jiang. [J]. J4, 2010, 18(4): 41 -46 .
[5] CHI Ji-Song, PAI Hong-Kun, QI Chuan-Duo, WANG Hu, QIN Xiang-Wei, LI Wen-Yu. [J]. J4, 2010, 18(4): 68 -70 .
[6] GENG A-Jiao, DUAN Jian-Hua. Analysis on the Ore-controlling Factors and Prospecting of Manzhanggang Gold Mine[J]. J4, 2010, 18(6): 34 -37 .
[7] LI Bin, JU Hai-Xiang, YANG Mu, DU Gao-Feng, HUI Ji-Kang, WANG Tian-Guo. [J]. J4, 2010, 18(4): 17 -21 .
[8] YAN Jie, QIN Ze-Li, XIE Wen-Bing, CA Bang-Yong. [J]. J4, 2010, 18(4): 22 -26 .
[9] HU Qin-Xia, SUN Ban, GANG Yu, LI Chu-Fang, ZHANG Ku-Xiao. Geological Features and Genesis of Beijinshan Gold Deposit,Gansu Province[J]. J4, 2010, 18(6): 18 -21 .
[10] ZHANG Huaquan,ZHANG Weixin,LI Hongjie. Ore—-formation Conditions and Exploration Orientation of the Gold Deposite in Jiaolai Basin,Shandong Province[J]. J4, 2008, 16(2): 12 -17 .