img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (5): 646-657.doi: 10.11872/j.issn.1005-2518.2020.05.110

Previous Articles     Next Articles

Research Progress of Typical Environmental Pollution in Polymetallic Mining Area and Its Filling and Gel Immobilization

Hua NA1(),Guocheng LÜ1(),Dan ZHANG2,Lijuan WANG1,Libing LIAO1,Lijie GUO2,Lingchang KONG1,Lijuan WU1,Jianhua BIAN1   

  1. 1.School of Materials Science and Technology,Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes,China University of Geosciences,Beijing 100083,China
    2.BGRIMM Technology Group,Beijing 110160,China
  • Received:2020-06-13 Revised:2020-07-21 Online:2020-10-31 Published:2020-11-05
  • Contact: Guocheng Lü E-mail:2103180038@cugb.edu.cn;guochenglv@cugb.edu.cn

Abstract:

The accumulation of solid waste such as tailings,smelting slag and mined-out areas caused by mining and smelting of mines has become the main problems in environmental protection,production and life safety in mining area.Typical pollution in mining areas includes lead-zinc,chromium,cadmium,manganese and arsenic pollution,which poses a great threat to groundwater,soil and health.Filling mining method is a new mining technology,which can not only effectively solve the problem of goaf collapse,but also immobilize the heavy metal by fill materials.At present,the reported studies mainly focus on the filling properties and gelation mechanism of filling cementitious material.However,the basic researches on the dissolution behavior and the immobilization mechanism of heavy metals are not enough yet.In this paper,the pollution features,dissolution behavior and migration mechanism of the typical contaminants in mining area,such as the lead,zinc,arsenic,chromium,cadmium,manganese and other harmful substances are presented.Through the ways of wastewater emission,atmospheric deposition,surface runoff,leaching,soil infiltration,the contaminant pollutes the atmosphere,water and soil around the mining area in the form of acid wastewater,waste gas or solid waste.The research progress on filling and immobilization of cementitious materials based on the solid waste from mining area,such as lead-zinc slag,blast furnace slag,chromium-containing slag,metal mine tailings are reviewed.The immobilization mechanism of harmful substances on the cementitious materials based on the solid waste from mining area is related to a series of physical and chemical behaviors,such as adsorption,precipitation,ions exchange,physical coating.However,the current study on the immobilization mechanism for harmful sub-stances on filling cementitious materials is not enough yet.Aiming at the present study and existing problems,prospects for the development of filling cementitious materials was put forward.The further study on filling cementitious materials could focus on the following aspects:Dissolution regulation and mechanism of heavy metals in tailings,smelting slag and cementitious materials,immobilization performance for harmful substances on cementitious materials based on solid waste,chemical composition,structure,reaction mechanism,relationship between product and solidified harmful substances,the effect on microstructure by harmful substance.This article could provide reference for the researchers and government officials for the development of filling cementitious materials.

Key words: mining area, solid waste, typical pollution, filling cementitious material, heavy metal immobilization

CLC Number: 

  • TD853

Table 1

Typical pollution characteristics and migration and transformation mechanism of pollution in mining area"

矿区污染来源矿山毒性特点、破坏性迁移特征修复治理
铅锌污染柴北缘锡铁山铅锌矿区难降解、易富集、易致癌,污染周边土壤和水体,破坏水土平衡富集于土壤表面,整体呈现Pb、Zn元素质量浓度随土壤深度的增加而减小的趋势周边覆盖健康土壤和石块;水泥混合固化;尾矿固废物充填采空区
铬污染徐州煤矿六价铬Cr(Ⅵ)属剧毒重金属,其溶解度大、迁移能力强,过量的铬会对呼吸系统和胃肠道系统产生刺激、致癌、致突变作用煤矿周边铬含量超出土壤自降解能力范围,通过土壤渗透方式使小麦农作物吸收铬,铬含量浓度呈先下降后上升的趋势生物降解、碱矿渣胶凝材料还原固Cr(Ⅵ)
镉污染贵州野马川镇金属采矿冶炼区镉属于有毒重金属,人体内较低含量的镉即可引发肺癌等慢性疾病镉具有高迁移率和强效性,易富集于表土层,通过淋溶作用以离子交换形式向土壤深度迁移,对浅层地下水造成威胁土壤固定、有机质降解、植物吸附、矿渣充填胶凝材料
锰污染福建龙岩市软锰矿过度摄入Mn元素会导致锰中毒,损坏人体运动器官和神经系统,严重者还会出现锰中毒帕金森综合症矿物尾矿在低pH值条件下通过还原作用释放锰离子。水体微生物活动可显著促进锰元素迁移转化。pH值变化是锰在流域土壤—河流系统迁移转化的重要调控机制源头控制、防止河流酸化
砷污染湖南石门雄黄矿区砷具毒性、致畸性和致癌性,其周边村落已有“癌症村”之称含砷废弃物溶解后发生多次沉淀,且吸附的五价砷不稳定易再次释放

矿渣—钢渣基胶

凝材料固化砷

其他污染广东大宝山多金属硫化物矿区酸性矿山废水会使水体和土壤酸化,其中富含的硫酸根、铬酸根、铜离子等危害生态系统和人体健康酸性废水排放时硫酸根通过吸附和固定化形成吸附态硫和酯键硫,铜、铬酸根等受酸度影响从黄钾铁钒矿物中溶出次生矿物通过吸附/共沉淀固定钝化

Table 2

Current status of research on environmental behavior of filling with cementitious materials based on solid waste of mining and metallurgy"

矿冶固废基胶凝材料主要污染来源应用方式固化机理研究现状
铅锌矿渣基胶凝材料铅、锌、铜等污染胶凝材料原料、地聚合物、碱活化胶凝材料物理包封与化学固定、锌离子氧化物或进入钠长石中铅锌矿开发较早,基础性质研究较为成熟,深入研究机理有助于铅锌矿渣的应用发展
高炉矿渣基胶凝材料锰、镉、砷等污染混凝土掺合料、水泥替代品C-S-H凝胶包封我国对高炉矿渣的应用研究技术较为落后,对高炉矿渣基胶凝材料的固化机理研究也较为缺乏
含铬矿渣基胶凝材料铬、铬酸根等污染胶凝材料原料铬与钙矾石水合相键合、C-S-H凝胶包封、价态控制铬的性质较为复杂,多方面探究其固化机理有助于含铬矿渣的广泛应用
金属矿尾矿制备的相关材料锰、铅、铜等污染骨料、水泥替代品物理包封我国对尾矿及其所制备材料的环境行为研究较少,对有害元素的固定化机理研究较为缺乏
非金属矿尾矿/石膏基胶凝材料砷、磷、氟等污染胶凝材料原料、水泥替代品C-S-H凝胶包封与化学沉淀非金属废弃物成分、结构相对复杂,因此相较于金属矿尾矿研究较少
煤矸石基胶凝材料磷等污染碱激发地聚合物煤矸石现多用于土地复垦方面,在充填胶凝材料方面的研究十分缺乏
其他固废基胶凝材料铅、铬等污染胶凝材料原料垃圾焚烧飞灰等固体废弃物的研究多集中于其有害元素固定方面,缺乏对其固化机理的研究
1 苏耀明,陈志良,雷国建,等.多金属矿区土壤重金属垂向污染特征及风险评价[J].生态环境学报,2016,25(1):130-134.
Su Yaoming,Chen Zhiliang,Lei Guojian,et al.Vertical pollution characteristic and ecological risk assessment of heavy metal of soil profiles in polymetallic ore mine[J].Ecology and Environment Sciences,2016,25(1):130-134.
2 Riveros G,Utigard T A.Disposal of arsenic in copper discharge slags[J].Journal of Hazardous Materials,2000,77(1/2/3):241-252.
3 张乔.充填采矿技术的应用分析[J].世界有色金属,2019(24):45-46.
Zhang Qiao.Application analysis of filling mining technology[J].World Nonferrous Metals,2019(24):45-46.
4 Wang L J,Wei Y K,Lü G C,et al.Experimental studies on chemical activation of cementitious materials from smelting slag of copper and nickel mine[J].Materials,2019,12(2):303.
5 Thomas B S,Damare A,Gupta R C.Strength and durability characteristics of copper tailing concrete[J].Construction and Building Materials,2013,48:894-900.
6 赵伟强,历军,俞龙生,等.粤北地区铅锌矿采选业土壤污染特征研究[J].广东化工,2018,45(12):79-82.
Zhao Weiqiang,Li Jun,Yu Longsheng,et al.A study on soil pollution characteristics of lead-zinc mine mining industry in northern Guangdong Province[J].Guangdong Chemical Industry,2018,45(12):79-82.
7 中华人民共和国卫生部.生活饮用水卫生标准:GB5749-2006[S].北京:中国标准出版社,2007.
Ministry of Health of the People’s Republic of China. Sanitary standard of drinking water:GB5749-2006[S].Beijing: China Standard Press,2007.
8 中华人民共和国生态环境部.土壤环境质量农用地土壤污染风险管控标准:GB15618-2018[S].北京:中国环境出版集团,2018.
Ministry of Ecology and Environment of the People’s Republic of China. Soil environmental quality management and control standards: GB15618-2018[S]. Beijing: China Environmental Publishing Group,2018.
9 张骁勇.尤溪铅锌矿区重金属的迁移与分布研究[D].福州:福建农林大学,2012.
Zhang Xiaoyong.Distribution and Transport of Heavy Metal in Youxi Lead-Zinc Mine[D].Fuzhou:Fujian Agriculture and Forestry University,2012.
10 Fang A M,Dong J H,Zhang R.Simulation of heavy metals migration in soil-wheat system of mining area[J].Environmental Research and Public Health,2019,16(14):2550.
11 黄泽宏,韩存亮,肖荣波,等.铅锌矿周边土壤重金属污染特征综述[J].广东化工,2015,42(15):105-108.
Huang Zehong,Han Cunliang,Xiao Rongbo,et al.Reviews on the characteristics of heavy metals pollution to areas around lead/zinc mines[J].Guangdong Chemical In-dustry,2015,42(15):105-108.
12 王建国,李玮,张世珍.柴北缘锡铁山矿区尾矿铅锌分布特征及污染防治探讨[J].有色金属(矿山部分),2020,72(1):84-88.
Wang Jianguo,Li Wei,Zhang Shizhen.Discussion on pollution control and distribution of lead and zinc in mine tailings in Xitieshan mining area,Northern Qaidam[J].Nonferrous Metals (Mine Section),2020,72(1):84-88.
13 张明涛.碱矿渣胶凝材料固结六价铬效率及机理研究[D].重庆:重庆大学,2018.
Zhang Mingtao.Immobilization Efficiency and Mechanism of Hexavalent Chromium by Alkali-activated Slag Binder[D].Chongqing:Chongqing University,2018.
14 彭川.制革污泥水泥固化/稳定化及Cr形态研究[D].南宁:广西大学,2014.
Peng Chuan.Solidification/Stabilization and Speciation Analysis of Cr in Tannery Sludge[D].Nanning:Guangxi University,2014.
15 Luo K,Liu H Y,Zhao Z P,et al.Spatial distribution and migration of cadmium in contaminated soils associated with a geochemical anomaly:A case study in southwestern China[J].Polish Journal of Environmental Studies,2019,28(5):3799-3807.
16 Wang J,Jiang Y J,Sun J,et al.Geochemical transfer of cadmium in river sediments near a lead-zinc smelter[J].Ecotoxicology and Environmental Safety,2020,196:110529.
17 陈能旺,王德利,鲁婷,等.九龙江流域地表水锰的污染来源和迁移转化机制[J].环境科学学报,2018,38(8):2955-2964.
Chen Nengwang,Wang Deli,Lu Ting,et al. Manganese pollution in the Jiulong river watershed:Sources and transformation[J].Acta Scientiae Circumstantiae,2018,38(8):2955-2964.
18 史振环,莫佳,莫斌吉,等.有色金属矿山尾矿砷污染及其研究意义[J].有色金属(矿山部分),2015,67(2):58-62.
Shi Zhenhuan,Mo Jia,Mo Binji,et al.Arsenic pollution and its research significance in non-ferrous metal mine tailings[J].Nonferrous Metals (Mine Section),2015,67(2):58-62.
19 Raven K P,Jain A,Loeppert R H.Arsenite and arsenate adsorption on ferrihydrite:Kinetics,equilibrium,and adsorption envelopes[J].Environmental Science and Technology,1998,32(3):344-349.
20 李文旭,何剑汶,刘璟,等.黄水溪砷环境地球化学迁移行为及其细菌群落分析[J].环境科学研究,2019,32(6):966-973.
Li Wenxu,He Jianwen,Liu Jing,et al.Environmental geochemistry and transportation behavior of arsenic and bacterial community analysis in Huangshui creek[J].Research of Environmental Sciences,2019,32(6):966-973.
21 Sprague D D,Michel F A,Vermaire J C.The effects of migration on Ca.100-year-old Arsenic-rich mine tailings in Cobalt,Ontario,Canada[J].Environmental Earth Sciences,2016,75(5):405.
22 Liu B,Peng T J,Sun H J,et al.Release behavior of uranium in uranium mill tailings under environmental conditions[J].Journal of Environmental Radioactivity,2017,171:160-168.
23 杨成方.金属硫化物矿区稻田土壤中硫素的迁移转化及次生硫酸盐矿物中重金属的溶出机制[D].广州:华南理工大学,2016.
Yang Chengfang.Migration and Transformation of Sulfur in Paddy Soil and Dissolution of Mechanism of Heavy Metal in Secondary Iron Sulfate Mineral in Metal Sulfide Mine Area[D].Guangzhou:South China University of Technology,2016.
24 Barna R,Moszkowicz P,Gervais C.Leaching assessment of road materials containing primary lead and zinc slags[J].Waste Management,2004,24(9):945-955.
25 Zhang D,Shi S L,Wang C B,et al.Preparation of cementitious material using smelting slag and tailings and the solidification and leaching of Pb2+[J].Advances in Materials Science and Engineering,2015(7):1-7.
26 Xia M,Muhammad F,Zeng L H,et al.Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer[J].Journal of Cleaner Production,2018,209:1206-1215.
27 Zhang P P,Muhammad F,Yu L,et al.Self-cementation solidification of heavy metals in lead-zinc smelting slag through alkali-activated materials[J].Construction and Bu-ilding Materials,2020,249:118756.
28 Mao Y H,Muhammad F,Yu L,et al.The solidification of lead-zinc smelting slag through bentonite supported alkali-activated slag cementitious material[J].International Jo-urnal of Environmental Research and Public Health,2019,16(7):1121.
29 聂轶苗,牛福生,张锦瑞.我国矿渣综合利用的现状[J].建材技术与应用,2009(2):6-9.
Nie Yimiao,Niu Fusheng,Zhang Jinrui.Present situation of the slag’s synthetic utilization in our country[J].Research and Application of Building Materials,2009(2):6-9.
30 杨霆,何曦.高炉矿渣资源化利用的研究现状及展望[J].中国环保产业,2020(3):65-68.
Yang Ting,He Xi.Research status and prospect of blast furnace slag resource recycling[J].China Environmental Protection Industry,2020(3):65-68.
31 Li Y,Liu Y,Gong X Z,et al.Environmental impact analysis of blast furnace slag applied to ordinary portland cement production[J].Journal of Cleaner Production,2016,120:221-230.
32 Yang W F,Xue Y J,Wu S P,et al.Performance investigation and environmental application of basic oxygen furnace slag-rice husk ash based composite cementitious materials[J].Construction and Building Materials,2016,123:493-500.
33 崔孝炜,狄燕清,冷欣燕,等.冶金渣胶凝材料协同固化铅的试验研究[J].矿产保护与利用,2018(6):103-106.
Cui Xiaowei,Di Yanqing,Leng Xinyan,et al.Study on the stabilization of Pb2+ by cementitious materials prepared with metallurgical slag[J].Conservation and Utilization of Mineral Resources,2018(6):103-106.
34 Cheng X W,Long D,Zhang C,et al.Utilization of red mud,slag and waste drilling fluid for the synthesis of slag-red mud cementitious material[J].Journal of Cleaner Production,2019,238:117902.
35 Ríos J D,Vahí A,Leiva C,et al.Analysis of the utilization of air-cooled blast furnace slag as industrial waste aggregates in self-compacting concrete[J].Sustainability,2019,11(6):1-18.
36 赵传卿,胡乃联.充填胶凝材料的发展与应用[J].黄金,2008,29(1):25-29.
Zhao Chuanqing,Hu Nailian.Development and application of cementing filling material[J].Gold,2008,29(1):25-29.
37 刘守庆,罗中秋,和森,等.高炉矿渣—粉煤灰地聚合物胶凝材料固化砷钙渣[J].化工进展,2017,36(7):2660-2666.
Liu Shouqing,Luo Zhongqiu,He Sen,et al.Solidification/stabilization of calcium arsenate waste with blast furnace slag and fly ash geopolymer materials[J].Chemical Industry and Engineering Progress,2017,36(7):2660-2666.
38 Wang F,Tao S Z,Liu R Q,et al.GMCs stabilized/solidified Pb/Zn contaminated soil under different curing temperature:Physical and microstructural properties[J].Chemosphere,2019,239:124738.
39 Xu Y T,Liu X M,Zhang Y L,et al.Investigation on sulfate activation of electrolytic manganese residue on early activity of blast furnace slag in cement-based cementitious material[J].Construction and Building Materials,2019,229:1-9.
40 Cheng S K,Shui Z H,Yu R,et al.Durability and environment evaluation of an eco-friendly cement-based material incorporating recycled chromium containing slag[J].Journal of Cleaner Production,2018,185:23-31.
41 汪发红,李波.铬铁渣水泥固化体水溶性Cr6+溶出规律及其水化产物[J].无机盐工业,2015,47(7):52-54.
Wang Fahong,Li Bo.Dissolution rule and hydration products of water soluble Cr6+ in ferrochromium slag cemented waste[J].Inorganic Chemicals Industry,2015,47(7):52-54.
42 郝旭涛,周新涛,蔡发万,等.铬铁渣基低温陶瓷胶凝材料的性能研究[J].硅酸盐通报,2015,34(7):2013-2018.
Hao Xutao,Zhou Xintao,Cai Fawan,et al.Property of ferrochrome slag based low-temperature cementitious material[J].Bulletin of the Chinese Ceramic Society,2015,34(7):2013-2018.
43 Ben M O,Hamzaoui R,Bennabi A,et al.Chromium stabilization and trapping in the cement matrix of recycled concrete aggregates[J].Construction and Building Materials,2018,191:667-678.
44 Król A.Mechanisms accompanying chromium release from concrete[J].Materials,2020,13(7):1891.
45 向丛阳.重金属离子在硅酸盐水泥水化产物中的固化行为[D].武汉:武汉理工大学,2015.
Xiang Congyang.Solidification Behavior of Heavy Metal Ions in Portland Cement Hydration Products[D].Wuhan:Wuhan University of Technology,2015.
46 Meena A H,Kaplan D I,Powell B A,et al.Chemical stabilization of chromate in blast furnace slag mixed cementitious materials[J].Chemosphere,2015,138:247-252.
47 刘畅.多场耦合下尾砂固结排放对重金属迁移的阻滞效应研究[D].北京:中国矿业大学(北京),2018.
Liu Chang.Study on Solidified Effect of Heavy Metal in Consolidated and Cemented Tailings Emission Disposal with Multifield Coupling[D].Beijing:China University of Mining and Technology—Beijing,2018.
48 Simonsen A M,Solismaa S,Hansen H K,et al.Evaluation of mine tailings’ potential as supplementary cementitious materials based on chemical,mineralogical and physical characteristics[J].Waste Management,2020,102:710-721.
49 李雪梅.尾矿库安全评价及综合预警技术研究[D].西安:西京学院,2020.
Li Xuemei. Study on Safety Assessment and Comprehensive Early-Warning Technology of Tailing Pond[D].Xi’an:Xijing Universtiy,2020.
50 Jung-Wook K,Myung C J.Solidification of arsenic and heavy metal containing tailings using cement and blast furnace slag[J].Environmental Geochemistry and Heal-th,2011,33:151-158.
51 粟著,张德明,张钦礼.金矿尾矿胶结充填试验及环境行为研究[J].黄金科学技术,2019,27(6):912-919.
Su Zhu,Zhang Deming,Zhang Qinli.Study on cementation filling test and environmental effect of gold mine tailings[J].Gold Science and Technology,2019,27(6):912-919.
52 Kiventerä J,Piekkari K,Isteri V,et al.Solidification/stabilization of gold mine tailings using calcium sulfoalu-minate-belite cement[J].Journal of Cleaner Production,2019,239:1-8.
53 李垚.尾矿固结前后重金属浸出行为规律和形态变化研究[D].郑州:河南农业大学,2016.
Li Yao.The Study of Tailings and Solidified Tailings Heavy Metal Leaching Toxicity and Speciation Analysis of Heavy Metals[D].Zhengzhou:Henan Agricultural Un-iversity,2016.
54 谷睿智.全尾砂胶结充填体重金属浸出机理研究[D].赣州:江西理工大学,2018.
Gu Ruizhi.Study on Leaching Mechanism of Heavy Metal in Cemented Paste Backfills[D].Ganzhou:Jiangxi University of Science and Technology,2018.
55 王桂芳,王翼文,张帅,等.硫化矿尾矿的综合利用及污染治理研究进展[J].金属矿山,2020,49(2):111-116.
Wang Guifang,Wang Yiwen,Zhang Shuai,et al.Research progress on comprehensive utilization and pollution treatment of sulfide ore tailings[J].Metal Mine,2020,49(2):111-116.
56 彭链.铁尾矿硅铝活性激发及铁尾矿基充填胶凝材料制备技术研究[D].重庆:重庆大学,2014.
Peng Lian.Research on Silica Alumina Activity Stimulation of Iron Tailings and Filling Cementitious Materials Based on Iron Tailings[D].Chongqing:Chongqing University,2014.
57 Zhang Y X,Shen W G,Wu M M,et al.Experimental study on the utilization of copper tailing as micronized sand to prepare high performance concrete[J].Construction and Building Materials,2020,244:118312.
58 高锦城,倪文,于淼,等.以铅锌尾矿为原料煅烧水泥熟料[J].金属矿山,2017,46(3):192-196.
Gao Jincheng,Ni Wen,Yu Miao,et al.Study on calcination cement clinker using a lead-zinc tailings as raw material[J].Metal Mine,2017,46(3):192-196.
59 何哲祥,肖祈春,周喜艳,等.铅锌尾矿制备水泥熟料及重金属固化特性[J].中南大学学报(自然科学版),2015(10):409-416.
He Zhexiang,Xiao Qichun,Zhou Xiyan,et al.Solidification of heavy metal and production of cement clinker by lead-zinc tailings[J].Journal of Central South University(Science and Technology),2015(10):409-416.
60 Pyo S,Tafesse M,Kim B J,et al.Effects of quartz-based mine tailings on characteristics and leaching behavior of ultra-high performance concrete[J].Construction and Bu-ilding Materials,2018,166:110-117.
61 鄢琪慧,倪文,高巍,等.矿渣—钢渣基胶凝材料固化某含砷尾砂试验[J].金属矿山,2018,47(11):195-198.
Yan Qihui,Ni Wen,Gao Wei,et al.Test of solidification of arsenic-containing tailings using blast furnace slag-steel slag based cementitious material[J].Metal Mine,2018,47(11):195-198.
62 Zhang Y Y,Zhang S Q,Ni W,et al.Immobilisation of high-arsenic-containing tailings by using metallurgical slag-cementing materials[J].Chemosphere,2019,223:117-123.
63 Zhang Y Y,Gao W,Ni W,et al.Influence of calcium hydroxide addition on arsenic leaching and solidification/stabilisation behaviour of metallurgical-slag-based green mining fill[J].Journal of Hazardous Materials,2020,390:122161.
64 姚志全.开阳磷矿黄磷渣胶结充填技术研究及可靠性分析[D].长沙:中南大学,2009.
Yao Zhiquan.Technological Study and Reliability Analysis of Yellow Phosphorus Slag and Phosphgypsum Backfill in Kaiyang Mine[D].Changsha:Central South University,2009.
65 罗通,杨林,李彩玉,等.磷石膏基充填料的制备及其有害物溶出率的研究[J].化工矿物与加工,2017,46(5):39-43.
Luo Tong,Yang Lin,Li Caiyu,et al.Study on preparation of phosphogypsum-based filling materials and its leaching rate of harmful substances[J].Industrial Minerals and Processing,2017,46(5):39-43.
66 黄绪泉,赵小蓉,唐次来,等.磷石膏基胶结材固结磷尾矿性能及浸出特征[J].环境工程学报,2016(10):5957-5963.
Huang Xuquan,Zhao Xiaorong,Tang Cilai,et al.Properties and leaching characteristics of cemented phosphate tailings backfill with phosphogypsum-based cementation material[J].Chinese Journal of Environmental Engineering,2016(10):5957-5963.
67 Xue X L,Ke Y X,Kang Q,et al.Cost-effective treatment of hemihydrate phosphogypsum and phosphorous slag as cemented paste backfill material for underground mine[J].Advances in Materials Science and Engineering,2019:1-11.
68 黄绪泉,姜明明,赵小蓉,等.氟石膏基材料胶凝性能和浸出毒性[J].非金属矿,2017,40(2):8-11.
Huang Xuquan,Jiang Mingming,Zhao Xiaorong,et al.Leaching toxicity and cementitious properties of fluorgypsum-based binder[J].Non-Metallic Mines,2017,40(2):8-11.
69 Zhou M,Zhang W H,Hou H B,et al.The activation of fluorgypsum with slag activator and the fluorine solidification mechanics[J].Journal of Wuhan University of Technology-Materials Science Edition,2011,26(5):1023-1026.
70 黄绪泉,侯浩波,周旻,等.钢渣—矿渣—氟石膏基胶结材固结铜尾矿性能[J].土木建筑与环境工程,2014,36(1):138-142.
Huang Xuquan,Hou Haobo,Zhou Mi,et al.Properties of cemented copper tailings backfill with steel slag-blast furnace slag-fluorgypsum-based cementation material[J].Journal of Chongqing Jianzhu University,2014,36(1):138-142.
71 漆贵海,蔡昌明,赖振彬,等.煤矸石细集料混凝土实心砖胶凝材料体系[J].混凝土,2014(1):53-55.
Qi Guihai,Cai Changming,Lai Zhenbin,et al.Cementitious materials in solid concrete brick with fine aggregate of coal gangue[J].Concrete,2014(1):53-55.
72 Zhao S,Muhammad F,Yu L,et al.Solidification/stabilization of municipal solid waste incineration fly ash using uncalcined coal gangue-based alkali-activated cementitious materials[J].Environmental Science and Pollution Research,2019,26(25):25609-25620.
73 王斌云,卞湘晖,薛凯旋,等.煤矸石胶凝材料的试验研究[J].粉煤灰,2015(3):21-24.
Wang Binyun,Bian Xianghui,Xue Kaixuan,et al.Experimental study of coal gangue cementitious material[J].Coal Ash,2015(3):21-24.
74 肖宇领.高炉矿渣熔融固化垃圾焚烧飞灰有毒重金属及其重构水淬渣安全消纳[D].郑州:郑州大学,2014.
Xiao Yuling.Solidification of Toxic Heavy Metals in Municipal Solid Waste Incineration (MSWI) Fly Ash with Melting Blast Furnace Slag and Safe Disposal of Its Reconstructed Slag[D].Zhengzhou:Zhengzhou University,2014.
75 李佳,张思奇,倪文,等.垃圾焚烧飞灰的固化及综合利用研究进展[J].金属矿山,2019,48(12):182-187.
Li Jia,Zhang Siqi,Ni Wen,et al.Research progress on solidification and comprehensive utilization of MSWI fly ash[J].Metal Mine,2019,48(12):182-187.
76 Yao Y,Sun H H.Durability and leaching analysis of a cementitious material composed of high volume coal combustion byproducts[J].Construction and Building Materials,2012,36:97-103.
77 Xu P,Zhao Q L,Qiu W,et al.The evaluation of the heavy metal leaching behavior of MSWI-FA added Alkali-Activated materials bricks by using different leaching test methods[J].International Journal of Environmental Research and Public Health,2019,16(7):1-17.
78 王一杰,李克庆,倪文,等.矿渣基胶凝材料固化垃圾焚烧飞灰中重金属的研究[J].金属矿山,2019,48(7):194-198.
Wang Yijie,Li Keqing,Ni Wen,et al.The study on solidification of heavy metal ions from garbage incineration fly ash using slag-based cementitious materials[J].Metal Mine,2019,48(7):194-198.
[1] Liuan DUAN,Youfeng WEI,Xiongjun CHEN,Xiaomeng HAN,Yuncheng GUO. Potential Analysis of Gold Resources in Qianchuiliu Mining Area, Northeast Margin of Jiaolai Basin,Shandong Province [J]. Gold Science and Technology, 2020, 28(5): 701-711.
[2] Zhiyuan YE,Qianqian WANG. Preparation and Performance of Aluminosilicate Based Solid Waste Cemen-titious Materials [J]. Gold Science and Technology, 2020, 28(5): 658-668.
[3] Yongyuan KOU, Guang LI, Long ZOU, Fengshan MA, Jie GUO. Study on Mining Method of Horizontal Pillar in the Middle Section of +1 000 m in Jinchuan No.2 Mining Area [J]. Gold Science and Technology, 2020, 28(3): 353-362.
[4] Chunde MA, Zelin LIU, Weibin XIE, Xin’ao WEI, Xinhao ZHAO, Shan LONG. Comparative Study of Stress Relief Method and Acoustic Emission Method in In-situ Stress Measurement in Deep Area of Xincheng Gold Mine [J]. Gold Science and Technology, 2020, 28(3): 401-410.
[5] Tianhang ZHANG, Xingdong ZHAO, Huaibin LI, Yifan ZHAO, Shujing ZHANG. Continuous Dry Filling of Long Room Method for Steeply Inclined and Medium Thick Orebody [J]. Gold Science and Technology, 2019, 27(5): 704-711.
[6] Wei LI,Fengshan MA,Xiangpeng LU,Jiayuan CAO,Jie GUO. Analysis of Geological Structure of Submarine Mining Area Based on 3D Seismic Exploration [J]. Gold Science and Technology, 2019, 27(4): 530-538.
[7] Shiqi RUAN,Xingke YANG,Wei ZHU,Yunfeng GAO,Ke HAN. Study on Characteristics of Ore-forming Fluids in Qipangou Tungsten Mining Area, Western of Zhen’an, Shaanxi [J]. Gold Science and Technology, 2019, 27(2): 153-162.
[8] SONG Guozheng,YAN Chunming,CAO Jia,GUO Zhifeng,BAO Zhongyi,LIU Guodong,LI Shan,FAN Jiameng,LIU Caijie. Breakthrough and Significance of Exploration at Depth More than 1 000 m in Jiaojia Metallogenic Belt,Jiaodong:A Case of #br# Shaling Mining Area [J]. Gold Science and Technology, 2017, 25(3): 19-27.
[9] LIU Guodong,WEN Guijun,LIU Caijie,BAO Zhongyi,SUN Zhongquan,FAN Jiameng,LI Shan,YAN Chunming,GUO Zhifeng. Discovery,Characteristics and Prospecting Direction of Shuiwangzhuang Deep Super-large Gold Deposit in the Northern Section of Zhaoping Fault [J]. Gold Science and Technology, 2017, 25(3): 38-45.
[10] WANG Xiaohui,WANG Yingchao,LONG Kanghua,LIU Huan,GUO Jishuang. The Application Effect of Soil Geochemical Survey in the Iquique HN Mining Area of Chile [J]. Gold Science and Technology, 2014, 22(1): 47-51.
[11] XU Tao,SU Yuyun,LIAO Zhanpi,ZHONG Shuiping,SU Xiuzhu,HUANG Lijuan. Study on Modes of Occurrence of Gold for Shuiyindong Gold Bearing Pyrite in Guizhou Province [J]. Gold Science and Technology, 2013, 21(5): 86-92.
[12] SI Chengbin,ZHANG Xupeng,DAI Jianglin,ZHAO Chungang,HAN Chunyu. Study on the Application of Split-set Bolts for Fracture Zone Supporting [J]. Gold Science and Technology, 2013, 21(3): 69-72.
[13] QIN Zhonglian,CUI Suyun. The Establishment of a Survey and Controlling Network in Duolalongwa Gold Mining Area,Qinghai Province [J]. Gold Science and Technology, 2013, 21(3): 59-63.
[14] YANG Jiguang,WANG Haitao,LIU Wenzhong. The Application of Multi Mining Area Filling Systems Integration and Improving the Efficiency of Production Mode in Jiaojia Gold Mine [J]. Gold Science and Technology, 2013, 21(2): 69-72.
[15] LIU Bei,LI Guomin,XIAO Lihui. The Application of PQ Drilling Tools for Geological Core Drilling in Zhaishang Mining Area [J]. Gold Science and Technology, 2012, 20(5): 63-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[2] LU Ren-Jiang, LIU Feng-Jin, LOU Wei-Hua-. Technology Innovation and Application on High Water Consolidation of Fill Mining Method[J]. J4, 2011, 19(1): 51 -54 .
[3] ZHAO hai, CHUI xuewu, XUN lunxian. Discussion On Geology and Isotope Characters of J iusangou Gold Deposit  in Wangq ing, J ilin Prov ince[J]. J4, 2008, 16(1): 48 -51 .
[4] XIE Guiming. Thought of Concern ingM in ing Right Va lue andM in ing Right Sun of Money[J]. J4, 2008, 16(1): 58 -61 .
[5] ZHAO Wenchuan ,PENG Suxia,LI Tao. Mode of Occurrence of the Vein and Foreground of Deep Ore Prospecting of Zhaishang Gold M ining Area[J]. J4, 2008, 16(2): 1 -4 .
[6] ZANG Enguang,YI Cunchang,ZHANG Chunxiao. The Geologic Feature and the Clue for Prospecting of Huana Conglomerate Gold Deposit in Heilongjiang[J]. J4, 2008, 16(2): 29 -32 .
[7] GAO Ruofeng,JING Longhua,WEI Lianxi. Geological Features and Genesis of Gold Deposit in Copper,Tungsten and Molubdenum Baoshan Xunke Canton[J]. J4, 2008, 16(2): 46 -47 .
[8] YANG Bao-Rong, YANG Xiao-Bin. Geological Characteristics and Ore-Controlling Factors of the Guoluolongwa Gold deposit,Doulan County,Qinghai Province[J]. J4, 2007, 15(1): 26 -30 .
[9] ZHANG Yan,CHEN Wen,YONG Yong,LIU Xinyu. Application Prospect of(U—Th)/He Dating in Ore Deposit Ge0chr0n0l0gy[J]. J4, 2008, 16(4): 1 -3 .
[10] LI Chu-Fang, XU Yong-An, CHAO Yin-Yin, WANG Mei-Juan, ZHANG Dai, LIU Jun, SUN Liang-Liang. Looking for Strata Bound Type Gold Deposit in Liaodong Metallogenic Belt[J]. J4, 2010, 18(3): 59 -62 .