img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (3): 450-456.doi: 10.11872/j.issn.1005-2518.2020.03.197

• Mining Technology and Mine Management • Previous Articles     Next Articles

Research on Safety Evaluation of Tailings Pond Based on Entropy Method-Catastrophe Theory

Zhenxing GAO1(),Jinping GUO2()   

  1. 1.Yangling Vocational and Technical College,Yangling 712100,Shaanxi,China
    2.Xi’an University of Architecture and Technology,Xi’an 710055,Shaanxi,China
  • Received:2019-12-10 Revised:2020-03-22 Online:2020-06-30 Published:2020-07-01
  • Contact: Jinping GUO E-mail:277481318@qq.com;414075711@qq.com

Abstract:

Tailings pond is a man-made source of dangerous debris flow with high potential energy,which threatens the safety of downstream residents and facilities.In recent years,tailings pond accidents have occurred frequently,causing extremely casualties, environmental pollution and bad social impact.In order to reduce the occurrence of accidents,the actual safety of the tailings pond must be scientifically evaluated.Aiming at the problems that complex causes of tailings dam accidents,many influencing factors of safety conditions,and difficulty in determining the proportion of each evaluation index in the whole system,this paper proposes a tailings dam safety evaluation method combining entropy method and catastrophe theory.Based on the “Four Factors”(people,things,management,environment) theory of safety management in system engineering,the safety status of the tailing pond is affected from the aspects of personnel status(A),the status of tailing pond itself (B),safety management(C) and environmental impact factors (D)were decomposed,and an index system of 3 layers and 11 underlying indicators was established.When in use,firstly,entropy method is used to sort the importance of evaluation indexes,and then catastrophe theory is used to calculate to obtain the catastrophe grade value of tailing pond,and finally the comprehensive safety grade of tailing pond is obtained.The method was applied to a engineering project,and the case studies show that the relative importance ranking results of the underlying indicators are:{A2,A3,A1},{B1,B3,B2},{C3,C1,C2},{D1,D2}.The relative importance ranking results of the middle indicators are:{B,C,A,D}.Then use the normal formula to calculate the total mutation level value is 0.9641,the mutation membership function value is 0.86,means the security level belongs to a safer level.This result is consistent with the results obtained by the expert group,and is in line with the basic situation of the tailings pond.The safety evaluation method based on entropy method-catastrophe theory can be adapted to the safety evaluation of tailings pond.

Key words: tailing pond, safety, entropy method, catastrophe theory, comprehensive evaluation, index system

CLC Number: 

  • X936

Fig.1

Comprehensive evaluation system for tailings reservoir safety"

Table 1

Membership function of safety level for tailings pond"

分值安全等级分值安全等级
(0.9,1.0)安全(0.6,0.7)较危险
(0.8,0.9)较安全(0,0.6)危险
(0.7,0.8)一般

Table 2

Information entropy,difference coefficient and weight for underlying indicators"

指标编号指标熵值指标差异系数指标权重
A10.99450.00550.0830
A20.99360.00640.0965
A30.99440.00560.0845
B10.99230.00770.1161
B20.99450.00550.0830
B30.99380.00620.0935
C10.99390.00610.0920
C20.99450.00550.0830
C30.99380.00620.0935
D10.99390.00610.0920
D20.99450.00550.0830

Table 3

Normalization results of three-level indexes"

影响因素突变模型三级指标归一化
人员状况(A)燕尾突变tA2=0.68=0.8246;tA3=0.833=0.9398;tA1=0.764=0.9337
尾矿库本身状况(B)燕尾突变tB1=0.92=0.9592;tB3=0.813=0.9322;tB2=0.764=0.9337
安全管理(C)燕尾突变tC3=0.70=0.8367;tC1=0.803=0.9283;tC2=0.754=0.9306
环境影响(D)尖点突变tD1=0.80=0.8944;tD2=0.753=0.9086

Table 4

Correspondence table of comprehensive evaluation value-catastrophe value"

综合评价值突变级数值综合评价值突变级数值
1.001.00000.700.9516
0.900.98540.680.9478
0.850.97760.670.9458
0.800.96930.650.9416
0.760.96240.600.9316
0.750.96070.500.9078
0.720.955300
1 中华人民共和国应急管理部.《国家安全监管总局关于开展非煤矿山安全生产专项整治工作的通知》解读[EB/OL].2017-06-01)[2019-11-15].
2 高振兴.基于强度折减法的尾矿坝稳定性数值分析[D].西安:西安建筑科技大学,2011.
Gao Zhenxing.Numerical Analysis of Tailings Dam Stability Based on Strength Reduction[D].Xi’an:Xi’an University of Architecture and Technology,2011.
3 何锦龙,伍跃胜,刘泽东,等.不同降雨量对尾矿坝稳定性的影响规律分析[J].金属矿山,2015,44(8):150-153.
He Jinlong,Wu Yuesheng,Liu Zedong,et al.Influence law analysis of different precipitation to the stability of tailings dam[J].Metal Mine,2015,44(8):150-153.
4 穆贵清,吕淑然,王冀飞.尾矿坝外排土压坡对尾矿坝稳定性影响研究[J].金属矿山,2013,42(12):108-110,122.
Mu Guiqing,Shuran Lü,Wang Jifei.Study on influence of waste dumping to cover slope to stability of tailings dam[J].Metal Mine,2013,42(12):108-110,122.
5 郝喆.尾矿库工程场地的地震安全性评价[J].金属矿山,2018,47(8):153-158.
Hao Zhe.Seismic safety evaluation on engineering site of the tailings pond[J].Metal Mine,2018,47(8) :153-158.
6 吴佳华.爆破振动对尾矿坝稳定性的影响[D].赣州:江西理工大学,2018.
Wu Jiahua.Influence of Blasting Bibration on Stability of Tailings Dam[D].Ganzhou:Jiangxi University of Science and Technology,2018.
7 Ouyang C J,He S M,Qiang X,et al.A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain[J].Computers and Geosciences,2013,52:1-10.
8 郑欣,许开立.尾矿坝溃坝后果严重度评价模型研究[J].工业安全与环保,2009,35(5):30-31.
Zheng Xin,Xu Kaili.Study on assessment model of severity degree of the tailings dam failure impact[J].Industrial Safety and Environmental Protection,2009,35(5):30-31.
9 王耀宇,佘成学,陈昱钦,等.尾矿库排洪系统竖井深度对泄流能力的影响研究[J].水利与建筑工程学报,2017,15(6):133-137.
Wang Yaoyu,She Chengxue,Chen Yuqin,et al.Influence of shaft depth on discharge capacity of tailings pond flood system[J].Journal of Water Resources and Architectural Engineering,2017,15(6):133-137.
10 陈雯.斜槽盖板形式对尾矿库排洪系统泄流能力的影响[J].金属矿山,2018,47(1):47-52.
Chen Wen.Influence of chute cover form on discharge capacity of flood drainage system in tailings pond[J].Metal Mine,2018,47(1):47-52.
11 韩艳杰,张志军,李亚俊.模糊综合评判模型在尾矿库安全检查评价中的应用[J].有色金属(矿山部分),2014,66(1) :62-66.
Han Yanjie,Zhang Zhijun,Li Yajun.Application of fuzzy synthetic evaluation model in safety inspection evaluation of tailings pond[J].Nonferrous Metals(Mining Section),2014,66(1):62-66.
12 罗飞飞,李庆军.基于灰色模糊理论的尾矿库安全评价方法研究[J].工业安全与环保,2009,35(8) :46-48.
Luo Feifei,Li Qingjun.Reaserch on safety evaluation method of tailing pond based on grey-fuzzy theory [J].Industrial Safety and Environmental Protection,2009,35(8):46-48.
13 郭进平,王雪妮,程平.基于不确定语言信息的尾矿库安全综合评价方法[J].辽宁工程技术大学学报(自然科学版),2011,30(2):216-220.
Guo Jinping,Wang Xueni,Cheng Ping.Safety evaluation method of tailings dam based on uncertain linguistic information[J].Journal of Liaoning Technical University(Natural Science),2011,30(2):216-220.
14 王英博,王琳,李仲学.基于HS-BP算法的尾矿库安全评价[J].系统工程理论与实践,2012,32(11):2585-2590.
Wang Yingbo,Wang Lin,Li Zhongxue.Safety evaluation of mine tailings facilities based on HS-BP algorithm[J].Systems Engineering-Theory and Practice,2012,32(11):2585-2590.
15 郭显光.熵值法及其在综合评价中的应用[J].财贸研究,1994(6):56-60.
Guo Xianguang.Entropy method and its application in comprehensive evaluation[J].Finance and Trade Resear-ch,1994(6):56-60.
16 凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1987.
Ling Fuhua.Mutation Theory and Its Application[M].Shanghai:Shanghai Jiao Tong University Press,1987.
17 聂兴信,张国丹.基于熵值法—突变理论的地下矿山紧急避险系统可靠性研究[J].黄金科学技术,2016,24(6):72-77.
Nie Xingxin,Zhang Guodan.Reliability evaluation of underground mine emergency refuge system based on entropy method and catastrophe theory[J].Gold Science and Technology,2016,24(6):72-77.
18 周荣义,黎忠文,牛会永.基于突变理论的油库火灾爆炸分析与模糊动态评价[J].中国安全科学学报,2006,16(6):97-101.
Zhou Rongyi,Li Zhongwen,Niu Huiyong.Analysis of fire and explosion and fuzzy dynamic safety assessment for oil depot based on mutation theory[J].China Safty Science Journal,2006,16(6):97-101.
19 郑锐,杨振宏,潘成林.基于熵技术的尾矿库安全模糊综合评价体系研究[J].中国安全生产科学技术,2011,7(6):107-111.
Zheng Rui,Yang Zhenhong,Pan Chenglin.Research on fuzzy comprehensive evaluation system of tailings based on entropy technology[J].Journal of Safety Science and Technology,2011,7(6):107-111.
20 马敏.尾矿库安全评价指标体系及安全评价信息管理系统[D].青岛:山东科技大学,2008.
Ma Min.Safety Evaluation Indicators System and Safety Evaluation of the Information Management System of Tailings Ponds[D].Qingdao:Shandong University of Sci-ence and Technology,2008.
21 高振兴,赵江平,郭进平,等.基于突变理论的尾矿库安全评价[J].金属矿山,2009,39(12):121-125.
Gao Zhenxing,Zhao Jiangping,Guo Jinping,et al.Safety assessment of tailing pond based on catastrophe theory[J].Metal Mine,2009,39(12):121-125.
22 吴中如,朱伯芳.三峡水工建筑物安全监控与反馈设计[M].北京:中国水利水电出版社,1999.
Wu Zhongru,Zhu Bofang.Safety Monitoring and Feedback Design of Three Gorges Hydraulic Structures[M].Beijing:China Water and Power Press,1999.
[1] Xingxin NIE, Quan GAN, Jian GAO, Shanshan FENG. Research on Safety Roof Span in Continuous Mining of Gold Vein Group Under Synergistic Concept [J]. Gold Science and Technology, 2020, 28(3): 337-344.
[2] Pinfang SONG, Zijun LI, Rongrong LI, Shuqi ZHAO, Yu XU. Analysis of Factors Influencing the Performance of High Altitude Mine Fan Based on Entropy Weight Fuzzy Method [J]. Gold Science and Technology, 2020, 28(3): 457-464.
[3] Yiqing LIU,Yanru LIANG,Nana LIU,Huan HU. Study on Evaluation Index System of Green Mine Construction Based on High Quality Development Perspective [J]. Gold Science and Technology, 2020, 28(2): 176-187.
[4] Xiaoming LIU,Lei DENG,Liguan WANG,Shunhua DENG,Xinfeng YANG,You WAN,Yanjun HE. Intelligent Mine Master Plan for Underground Metal Mine [J]. Gold Science and Technology, 2020, 28(2): 309-316.
[5] Guoyan ZHAO,Pan WU,Xingfu ZHU,Yuan ZHAO,Yang LI,Ju QIU. Priority Evaluation of Green Mining Technology in Sanshandao Gold Mine Based on Grey Correlation Analysis [J]. Gold Science and Technology, 2019, 27(6): 835-843.
[6] Qinli ZHANG,Yufei ZHAO,Shuai RONG,Qian KANG. Optimization of Gently Inclined Thin Vein Mining Method Based on Variable Weight Theory and TOPSIS [J]. Gold Science and Technology, 2019, 27(6): 844-850.
[7] Shi WANG,Yong SHI,Wanyin WANG. Comprehensive Safety Evaluation of Tailings Reservoir Based on Fuzzy Multivariate Contact Model [J]. Gold Science and Technology, 2019, 27(6): 903-911.
[8] Ning MA,Nailian HU,Guoqing LI,Duiming GUO,Jie HOU. Evaluation of Human-Machine Effectiveness of Plateau Mine Based on Fuzzy Analytic Hierarchy Process [J]. Gold Science and Technology, 2019, 27(6): 871-878.
[9] Zhuan DAI,Zhouquan LUO,Yaguang QIN,Lei WEN,Chunsheng DING,Zhezhe DONG. Construction and Evaluation of Generalized Safety Management Model for Underground Metal Mines [J]. Gold Science and Technology, 2019, 27(6): 920-930.
[10] Enxiang SONG, Qiang LI, Jing ZHANG, Kang PENG. Research and Application of Artificial False Bottom in Mining of Orebody in Alteration Zone [J]. Gold Science and Technology, 2019, 27(5): 722-730.
[11] Jianhua HU,Shuohan XU,Zelin XU,Lei HAN. Numerical and Entropy Coupling Optimization of Mining Methods in Urban Underground Mines [J]. Gold Science and Technology, 2019, 27(4): 513-521.
[12] Jiayuan CAO,Fengshan MA,Jie GUO,Guodong ZHANG,Zhaoping LI. Study on Subsidence Prediction of Inclined Orebody Cut and Fill Mining in Seabed [J]. Gold Science and Technology, 2019, 27(4): 522-529.
[13] Xuan WANG,Yabian WANG,Lichen LIU,Xing CAO,Lifang ZHAO,Zhaohu ZHANG. Analysis on the Environmental Safety Status and Discussion on Reasonable Closure Measures for Tailings Reservoir in Longnan City [J]. Gold Science and Technology, 2019, 27(1): 144-152.
[14] Rendong HUANG,Zanzan LIU,Zezheng YAN. Research on the Safety of Deep Foundation Pit Based on Finite Cloud Model [J]. Gold Science and Technology, 2019, 27(1): 72-79.
[15] Yexin ZENG,Qinli ZHANG. Research on the Safety Degree of Hunan Province Nonferrous Metals Resources Based on Elastic Coefficient Method [J]. Gold Science and Technology, 2018, 26(6): 803-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Fangfang,ZHANG Yifei,XUE Guang. Disposal to Pollution and Resource Utilization to Waste for Gold Smelting[J]. J4, 2011, 19(2): 67 -73 .
[2] WANG Jiqing,WANG Ping,ZHAO Xiaojuan,LIN Xiangwei. Study and Apply on Comprehensive Recovery of Tailing Ore of Gold Flotation[J]. J4, 2010, 18(5): 87 -89 .
[3] CHEN Jianhong,QIN Caoyuan,DENG Dongsheng. Risk Assessment of Bedded Rock Roadway Roof Fall Based on AHP and Matter-Element TOPSIS Method[J]. Gold Science and Technology, 2017, 25(1): 55 -60 .
[4] XIE Minxiong,LI Zhengyao,LIN Shuyong,CHI Xiaopeng,QI Chuanduo. Research on the Technology Innovation and Application of Improving Performance of Grinding System in Concentrator [J]. Gold Science and Technology, 2012, 20(6): 65 -68 .
[5] WANG Wenjun,XIAO Qingfei,KANG Huaibin,ZHAN Xinshun,WU Qiming,XIAO Hun. Optimization Experiment Research on the Ball Charge Characteristics of MQG3660 Grate-type Ball Mill in a Gold Mine[J]. Gold Science and Technology, 2016, 24(2): 90 -94 .
[6] HU Xiaokun,SONG Huichang,LIU Qing. [J]. Gold Science and Technology, 2016, 24(5): 94 -101 .
[7] . [J]. Gold Science and Technology, 0, (): 0 .
[8] MA Fengshan,GUO Jie,LI Kepeng,LU Rong,ZHANG Hongxun,LI Wei. Monitoring and Research for the Deformation of Mine Backfill and Roof Surrounding Rock when Exploiting Sanshandao Seabed Gold Mine[J]. Gold Science and Technology, 2016, 24(4): 66 -72 .
[9] QU Hui, WANG Baiyi, WANG Jianmin, LI Chenglu, XU Guozhan, WANG Zhuo. Application of Soil Geochemical Survey in the Exploration of Yongxin Gold Deposit and Its Prospecting Effect[J]. Gold Science and Technology, 2018, 26(2): 143 -152 .
[10] GAO Shuai1,2,ZENG Qingdong1,YU Changming,XING Baoshan,JING Linhai,YE Jie,FAN Hongrui,YANG Kuifeng. Application of Remote Sensing and Comprehensive Geophysical Methods in Spatial Localization of Hidden Metallogenic Intrusions in South Zhaoyuan,Shandong Province[J]. Gold Science and Technology, 2017, 25(5): 1 -10 .