img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (4): 603-609.doi: 10.11872/j.issn.1005-2518.2020.03.185

• Mining Technology and Mine Management • Previous Articles     Next Articles

Experimental Study on Optimizing the Media System of Large-scale Ball Mill in a Copper Mine in Jiangxi Province

Fubo LI1(),Qingfei XIAO2,3(),Yinqi HUANG2,3,Qian ZHANG2,3,Xudong WANG2,3   

  1. 1.Luanchuan County Dadongpo Tungsten and Molybdenum Mining Co. , Ltd. ,Luoyang 471500,Henan,China
    2.State Key Laboratory of Mineral Processing Science and Technology,Beijing 100070
    3.Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
  • Received:2019-11-13 Revised:2020-03-03 Online:2020-08-31 Published:2020-08-27
  • Contact: Qingfei XIAO E-mail:541356574@qq.com;13515877@ qq.com

Abstract:

In order to improve the problems of unreasonable particle size composition,low processing capacity,low transfer rate and high energy consumption of large-scale ball mill grinding products,achieving the purpose of improving the quality of grinding products and optimizing the beneficiation index of the beneficiation plant in a copper mine in Jiangxi,in this paper,the test is performed according to the following steps.Firstly,the main mechanical properties of the ore were determined,including bulk density,elastic modulus,and Poisson’s ratio.Secondly,a laboratory grinding comparison test was carried out in a D×L=240 mm×300 mm)mill,by comparing the grinding effects of the five grinding schemes of the recommended scheme,the plant scheme,the larger scheme,the smaller scheme,and the steel section scheme,the working media system of the mill media with the best ore matching of the concentrator was finally determined as φ60∶φ50∶φ40∶φ30=30∶25∶30∶15.Summarizing the ore mechanical property test results and laboratory grinding test results,we can conclude that:The ore mechanical property test results show that the average ore bulk density is 2.78 g/cm3,the average hardness is 7.9,the average elastic modulus is 3.11×104 MPa,and Poisson’s ratio with average value of 0.25.The overall properties of the ore are media hardness but high toughness.During the ore grinding process,the number of grinding times per unit time should be strengthened.The results of laboratory grinding show that the recommended scheme has a reduction of 1.21 percentage points in the coarse grade (+0.200 mm) and 0.32 percentage points in the over-comminuted grade(-0.010 mm) and the intermedia easily selectable grade(-0.200+0.010 mm) grain content increased by 2.53 percentage points compared with the current plant scheme;Recommended scheme has a better grinding effect compared with steel section scheme,although the over-comminuted grade(-0.010 mm) grain of recommended scheme is 2.75 percentage points higher,the coarse grade(+0.200 mm) grain grade content,grinding fineness(-0.074 mm) grain grade content and intermediate easily selectable grade(-0.200+0.010 mm) grain grade content have increased respectively,they increased by 4.58 percentage points,1.48 percentage points and 3.25 percentage points.Compared with data before and afterthe industrial test,the monthly processing capacity was increased by 13 242 t,the transfer rate of the mill was increased by 2.18 percentage points and the monthly power consumption was reduced by 173 kW.It shows that optimizing the grinding media system can not only improve the quality of the grinding products to a certain extent,but also have an important promotion significance for energy saving and consumption reduction,significantly improve the company’s core technical level and have reference significance for the same type of mine.

Key words: copper ore, large-scale ball mill, granular composition, media system, grinding products, particle size uniformity, transfer rate

CLC Number: 

  • TD982

Table 1

Grinding conditions of laboratory"

参数参数值
磨机类型湿式球磨机
磨机尺寸(直径D×长度L)/mm240×300
球磨机转速/%75
磨矿时间/min18
球荷重量/kg11.5
球磨机给矿量/kg2
磨矿浓度/%70
磨矿介质尺寸和配比变量

Table 2

Grinding test schemes"

方案 编号方案名称方案内容平均球径 /mm
1现场方案φ70∶φ60∶φ50∶φ40∶φ30=30∶20∶20∶20∶1053.0
2推荐方案φ60∶φ50∶φ40∶φ30=30∶25∶30∶1547.0
3偏大方案φ70∶φ60∶φ50=25∶35∶4058.5
4偏小方案φ50∶φ40∶φ30=25∶35∶4038.5
5钢段方案(55×60)∶(45×50)∶(35×40)∶(25×30) =30∶25∶30∶1547.0

Table 3

Evaluation index"

评价指标粒级范围/mm
过粗级别+0.200
中间易选级别-0.200+0.010
磨矿细度-0.074
过粉碎级别-0.010

Table 4

Determination results of mechanical properties of ores"

矿块编号天然容重/(g·cm-3单轴抗压强度/MPa平均强度/MPa割线弹性模量E50/(×104 MPa)E50平均值割线泊松比U50U50平均值
1#矿块2.6979.483.83.723.870.270.27
88.24.140.27
83.83.740.28
2#矿块2.8969.472.14.014.100.140.14
71.33.950.12
75.74.340.15
3#矿块2.7664.271.44.034.270.320.33
73.24.540.34
76.94.170.33

Fig.1

Positive cumulative particle size characteristic curves of sand settling in 1# and 2# cyclone"

Fig.2

Positive cumulative particle size characteristic curve of ore discharge"

Fig.3

Positive cumulative particle size characteristic curves of grinding products with different steel ball media schemes"

Fig.4

Grinding effects of different steel ball media schemes"

Fig.5

Positive cumulative particle size characteristic curves of grinding products with different media schemes"

Fig.6

Comparison of grinding effects of different media proportioning schemes"

Table 5

Comparison of production index before and after industrial test"

生产指标工业试验前工业试验后
矿石总处理量/t670 385710 112
月矿石处理量/t223 462236704
运转率/%93.6495.82
功率/kW9 3229 149
1 任文礼.提高大型球磨机处理能力的关键技术研究[D].沈阳:东北大学,2015.
Ren Wenli.Key Technologies Research on Improving Processing Capacity of Large-scale Ball Mill[D].Shenyang:Northeastern University,2015.
2 罗文舜.大型球磨机控制系统的设计[D].鞍山:辽宁科技大学,2016.
Luo Wenshun.The Design of Large Ball Mill Control System[D].Anshan:University of Science and Technology Liaoning,2016.
3 王越,杨世亮,邵爽,等.大型球磨机钢球配比试验研究与工业应用[J].有色金属(选矿部分),2016(3):63-65.
Wang Yue,Yang Shiliang,Shao Shuang,et al.Industrial test research and application on the steel ball grading of the large-scale ball mill [J].Nonferrous Metals (Mineral Processing Section),2016(3):63-65.
4 马斌,刘建远.磨矿产品粒度组成对铅浮选的影响研究[J].有色金属(选矿部分),2016(2):29-33.
Ma Bin,Liu Jianyuan.Research of effect of the particle size composition of grinding product on the flotation of lead[J].Nonferrous Metals (Mineral Processing Section),2016(2):29-33.
5 严刘学,史广全,刘安平,等.梅山铁矿提高磨矿产品均匀性试验[J].现代矿业,2014,30(4):130-132.
Yan Liuxue,Shi Guangquan,Liu Anping,et al.Study on mineral processing technology of refractory copper lead zincpoly metal licores [J].Modern Mining,2014,30(4):130-132.
6 刘青,彭良振,王宝,等.介质的尺寸和配比对球磨机磨矿粒度影响的研究[J].有色金属(选矿部分),2015(6):68-73.
Liu Qing,Peng Liangzhen,Wang Bao,et al.Effects of different size and proportion of steel balls on grinding size in ball mill [J].Nonferrous Metals (Mineral Processing Section),2015(6):68-73.
7 李冬莲,汪桥,曹先敏,等.胶磷矿磨矿特性对浮选效果影响研究[J].非金属矿,2014(6):49-51.
Li Donglian,Wang Qiao,Cao Xianmin,et al.The research of grinding characteristics of phosphate on flotation[J].Non-Metallic Mines,2014(6):49-51.
8 戈保梁,张晋禄,王显强,等.云南某铜选厂尾矿再选试验[J].金属矿山,2016,45(2):176-180.
Ge Baoliang,Zhang Jinlu,Wang Xianqiang,et al.Experiment on reconcentration of tailings from a copper plant in Yunnan[J].Metal Mine,2016,45(2):176-180.
9 刘瑜,杨昊,邹春林,等.精确化磨矿对产品粒度分布及能耗的影响[J].矿业研究与开发,2015(7):53-57.
Liu Yu,Yang Hao,Zou Chunlin,et al.Influence of accurate grinding on product size distribution and energy consumption[J].Mining Research and Development,2015(7):53-57.
10 雷小莉,李金泉,徐忠敏,等.精确化装补球技术在金翅岭金矿选矿厂的应用[J].黄金科学技术,2015,23(6):87-91.
Lei Xiaoli,Li Jinquan,Xu Zhongmin,et al.Application of the technology of accurate ball loading and addition in concentrating mill of Jinchiling gold mine[J].Gold Science and Technology,2015,23(6):87-91.
11 程旭,武豪杰,王泽红.介质制度对磨矿过程影响的研究进展[J].金属矿山,2013,42(9):104-107.
Cheng Xu,Wu Haojie,Wang Zehong.The research progress of effect on grinding media system on grinding process[J].Metal Mine,2013,42(9):104-107.
12 Li G P,Chen W,Sun L H,et al.The influence of cylindrical grinding medium on particle size and mechanical properties of TiC steel bonded carbide[J].Materials Science Forum,2016,849:781-787.
13 吴琼,柏杨,张加官,等.球磨机磨球冲击物料过程特性分析[J].矿山机械,2014,42(1):68-72.
Wu Qiong,Bai Yang,Zhang Jiaguan,et al.Characteristic analysis on process of grinding ball impacting charge in ball mill[J].Mining & Processing Equipment,2014,42(1):68-72.
14 金弢,李若兰,郭永杰.钢锻在磷矿磨矿中的应用研究[J].化工矿物与加工,2014(10):18-22.
Jin Tao,Li Ruolan,Guo Yongjie.Application of forged steel in phosphate grinding.[J].Industrial Minerals and Processing,2014(10):18-22.
15 王文军,肖庆飞,康怀斌,等.短圆柱型磨矿介质用于新疆星塔金矿二锻磨矿的试验研究[J].黄金,2016,37(5):55-58.
Wang Wenjun,Xiao Qingfei,Kang Huaibin,et al.Experimental study on short cylindrical grinding media being applied in the second-stage grinding at Xingta gold mine,Xinjiang[J].Gold,2016,37(5):55-58.
16 Xiao Q F,Li B,Kang H B.The effect of fine grinding medium feature on grinding results[J].Aasri Procedia,2014,7:120-125.
17 崔瑞,刘昕,张义闹,等.球磨机钢球球径制度对磨碎速率的影响研究[J].矿冶工程,2019,39(1):39-43, 48.
Cui Rui,Liu Xin,Zhang Yinao,et al.Effect of diameter regime of ball charge on grinding rate in ball mill[J].Mining and Metallurgical Engineering,2019,39(1):39-43,48.
18 王泽红,高伟,刘高峰.太钢尖山铁矿一段磨机介质优化研究[J].金属矿山,2019,48(9):102-106.
Wang Zehong,Gao Wei,Liu Gaofeng.Research on grinding medium optimization for the primary mill in Jianshan iron mine of TISCO[J].Metal Mine,2019,48(9):102-106.
19 廖银英,杨远坤,曾继敏,等.某选矿厂MQY5064球磨机磨矿产能优化研究[J].有色金属(选矿部分),2016(6):69-71.
Liao Yinying,Yang Yuankun,Zeng Jimin,et al.Study on promoting capacity of the MQY5064 ball mill used in a ore-dressing plant[J].Nonferrous Metals (Mineral Processing Section),2016(6):69-71.
20 范保建,佐太东,庞玉明,等.溢流型球磨机产能优化改造及应用[J].黄金,2017,38(9):52-57.
Fan Baojian,Zuo Taidong,Pang Yuming,et al.Productivity optimization of overflow ball mill and its application [J].Gold,2017,38(9):52-57.
21 朱月锋,朱潇.优化钢球级配改善适宜浮选粒级组成的研究[J].矿山机械,2019,47(6):33-36.
Zhu Yuefeng,Zhu Xiao.Research on optimization of size proportion of grinding balls for improvement of particle size suitable for flotation[J].Mining & Processing Equipment,2019,47(6):33-36.
22 路和,戴丽莉,姚荣斌,等.球磨机研磨介质冲击特性和碰撞能量分布特性研究[J].有色金属(选矿部分),2018(6):77-81.
Lu He,Dai Lili,Yao Rongbin,et al.Analysis of impact characteristic and collision energy distribution of grinding media [J].Nonferrous Metals (Mineral Processing Section),2018(6):77-81.
23 钟旭群.介质配比对磨矿效果影响的试验研究[J].矿冶,2014,23(5):24-26,43.
Zhong Xuqun.Experimental study on influence of medium size distribution on the grinding performances[J].Mining and Metallurgy,2014,23(5):24-26,43.
24 严刘学.提高梅山铁矿磨矿产品粒度均匀性的试验研究[J].金属矿山,2014,43(8):61-64.
Yan Liuxue.Increasing granular uniformity of grinding product from Meishan iron mine[J].Metal Mine,2014,43(8):61-64.
25 Cleary P W.A multiscale method for including fine particle effects in DEM models of grinding mills[J].Minerals Engineering,2015,84:88-99.
[1] WU Caibin,LIU Yu,ZHOU Yichao,ZHOU Bin,YANG Hao,YAN Faming,ZOU Chunlin. Experimental Study on Gold Recovery from Low Gold High-Sulfur Copper Ore [J]. Gold Science and Technology, 2014, 22(5): 74-78.
[2] ZHENG Xilian,HUANG Sijie,WEI Zhuanhua. Study on the Beneficiation Tests of a Low Grade Mixed Copper Ore [J]. Gold Science and Technology, 2013, 21(5): 71-75.
[3] DONG Xiang-Beng, DU Tie-Mei, LIU Qiang-Yun, GUAN Bei, ZHANG Xiao-Juan. Discussion about the Geological Characteristics and Genesis of Xiekeng Gold-Copper Mine,Qinghai Province [J]. J4, 2010, 18(1): 46-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Chu-Fang, XU Yong-An, CHAO Yin-Yin, WANG Mei-Juan, ZHANG Dai, LIU Jun, SUN Liang-Liang. Looking for Strata Bound Type Gold Deposit in Liaodong Metallogenic Belt[J]. J4, 2010, 18(3): 59 -62 .
[2] WANG Da-Beng, SONG Bing-Jian, HUI Ku-Meng. The Application of High Power IP Method for Searching Concealed Metallic Mine in Beishuiquan,Liaoning Province[J]. J4, 2010, 18(3): 76 -78 .
[3] FU Xing. [J]. J4, 2010, 18(4): 54 -57 .
[4] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[5] CHEN Li-Zi, CAO Dong-Hong, YANG De-Mei. Element Geochemical Characteristics of Guloushan Ore Section in Jinlongshan Gold Mine,Shaanxi Province[J]. J4, 2011, 19(1): 28 -33 .
[6] ZHANG Huaquan,ZHANG Weixin,LI Hongjie. Ore—-formation Conditions and Exploration Orientation of the Gold Deposite in Jiaolai Basin,Shandong Province[J]. J4, 2008, 16(2): 12 -17 .
[7] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[8] YUAN Dong-Cheng, XU Xiao-Feng. [J]. J4, 2010, 18(4): 47 -49 .
[9] LIU Yuan-Hua, YANG Gui-Cai, ZHANG Lun, JI Jin-Zhong, LI Wen-Liang. Petrology and Geochemistry of Granites in Yangshan Ultra-large Gold Deposit,West Qinling[J]. J4, 2010, 18(6): 1 -7 .
[10] SONG He-Min, FENG Chi-Li, DING Xian-Hua. Geological-Geochemical Charicteristics and Prospecting Direction of Jiaojiekou Mining Area, North Part of Taihang Mountain[J]. J4, 2010, 18(3): 54 -58 .