img

Wechat

Adv. Search

Gold Science and Technology ›› 2019, Vol. 27 ›› Issue (4): 505-512.doi: 10.11872/j.issn.1005-2518.2019.04.505

• Mining Technology and Mine Management • Previous Articles     Next Articles

Numerical Simulation on Stability of Shallow-buried Goaf Group with Overlying Highway

Shijiao YANG1(),Zhihui WANG2   

  1. 1. School of Nuclear Resources Engineering,University of South China,Hengyang 421001,Hunan,China
    2. School of Civil and Resources Engineering,University of Science and Technology Beijing,Beijing 100083,China
  • Received:2018-05-22 Revised:2019-04-12 Online:2019-08-31 Published:2019-08-19

Abstract:

After more than ten years of underground mining in a quarry in Liuyang City, a gob group was formed by four irregular goafs, and the gobs were close to the surface with a running county-level Jiuxi highway.In order to develop the next-stage mining plan and ensure the safe operation of the above-mentioned roads and the quarry, it is necessary to comprehensively analyze and judge the stability of the goaf group and the overlying road.Field surveys about occurrence condition of goafs, hydrogeology survey as well as engineering geometry survey were performed.On-site point sample loading experiments and indoor rock mechanics experiments were made and basic mechanical parameters of surrounding rock were obtained and then the chart of the discrete strength parameters of the rock was used to analysis the quality of rock mass.After that,the required strength parameters for numerical analysis were calculated out with the method of Hoek-Brown principle as well as some amendments of related strength parameters.Then, numerical model about shallow buried connected goaf groups of the quarry formed after mining as well as highway on topsoil over the goaf group was built to evaluate the stability of goafs and highway so as to bring forward corresponding measures.After the initial geo-stress simulation and the formation of the goafs, in order to explore the impact of the driving load on the goaf, the driving load is applied to the road surface in the form of normal pressure, and then calculated to balance.Comprehensive evaluations on stability of goafs show that goafs are basically in stable condition and the goafs have little influence on overlying highway.The results also indicate that the highway is generally stable with partial separation of layers.Due to the spatial distribution characteristics of the goafs, the subsidence curvature caused by the uneven settlement and the local separation of road layers are harmful to the highway.The distribution of separation zone presents the characteristics of overall dispersion and local concentration, that is, unevenly distributed local strip-shaped separation zone. To ensure the safety of goaf and healthy running of highway,disposal measures for goafs and the road were proposed.Overall, the relative spatial position of the highway and the goafs and the surface topography of the surface play a major role in controlling the damage form of the highway.To ensure the safety of the road and avoid the activation of the goafs.Finally, it is recommended to backfill the 4# goaf to reduce the non-uniformity of spatial distribution and reinforce the separation part of the road by local grouting.

Key words: shallow buried goaf group, rock mechanics parameters, stability, numerical simulation, surface subsidence, highway abscission

CLC Number: 

  • TD323

Fig.1

Plane figure of goaf group"

Table 1

Basic situation of goaf group"

采空区编号 采宽/m 采宽超幅/m 采长/m 空区面积/m2 采高/m 采高超幅/m 空区体积/m3 空区顶板距地表高度/m 是否采完
总计 4 520 44 120
空区1 14 4 100 1 400 13 3 18 200 40
空区2 10 / 200 2 000 8 / 16 000 80
空区3 8 / 40 320 6 / 1 920 85
空区4 10 / 80 800 10 / 8 000 90

Fig.2

Spacial location map of goaf group and overlying highway"

Table 2

Discrete analysis results of rock mechanics strength parameters"

统计项目 Is/MPa Is(50)/MPa R C/MPa R t/MPa C/MPa Φ/(°) E/MPa v
统计总数 12 12 12 12 12 12 12 12
最大值 3.893 4.308 71.148 3.352 25.655 20.17 71 403.834 0.134
最小值 1.061 1.452 32.049 1.321 11.384 19.88 57 707.332 0.133
平均值 2.174 2.732 50.310 2.252 18.037 20.03 63 844.740 0.134
标准值 1.677 2.206 43.073 1.876 15.396 19.976 61 321.641 0.134
标准差 0.946 1.003 13.801 0.715 5.036 0.11 4 811.507 0.000
变异系数 0.435 0.367 0.274 0.318 0.279 0.01 0.075 0.003
统计修正系数 0.772 0.807 0.856 0.833 0.854 1.00 0.960 0.999

Table 3

Discrete statistics of strength parameters in"

统计项目 ρ/(kN·m-3 R C/MPa R t/MPa E/MPa v
统计总数 5 5 5 5 5
最大值 27.570 77.795 4.228 25.07 0.283
最小值 27.150 24.574 3.418 2.77 0.141
平均值 27.448 53.629 3.770 16.95 0.172
标准值 27.284 33.860 3.465 8.519 0.113
标准差 0.173 20.827 0.322 8.88 0.062
变异系数 0.006 0.388 0.085 0.52 0.362
统计修正系数 0.994 0.631 0.919 0.50 0.657

Table 4

Mechanical strength parameters of rock mass"

参数 数值 参数 数值
抗压强度/MPa 4.835 摩擦角/(o 34.15
抗拉强度/MPa 0.215 弹性模量/GPa 10.954
黏聚力/MPa 3.145

Table 5

Calculating parameters of mesh sets"

网格组 本构模型 弹性模量E 泊松比 容重/(kN·m-3) 内聚力/(kN·m-2) 摩擦角/(°)
面层 摩尔库伦 1 GPa 0.3 22 60 35
基层 摩尔库伦 500 MPa 0.25 21 45 30
垫层 摩尔库伦 200 MPa 0.3 20 30 25
表土 摩尔库伦 28 MPa 0.3 19 17 22
矿石及围岩 摩尔库伦 10.95 GPa 0.45 27.2 3 145 34.2

Fig.3

Contour of surface subsidence"

Fig.4

Contour of surface subsidence caused by goaf group"

Fig.5

Contour of roof subsidence"

Fig.6

Contour of maximum principal stress of uprock"

Fig.7

Contour of maximum principal stress in medium height of pillar"

Fig.8

Abscission region of highway"

1 邓红卫,杨懿全,邓畯仁,等 .采空区下方高应力环境下深部矿体回采时序研究[J].黄金科学技术,2017,25(2):62-69.
Deng Hongwei , Yang Yiquan , Deng Junren , et al . Study on mining sequence of deep orebody under high stress environment below goaf [J]. Gold Science and Technology,2017,25(2):62-69.
2 Seryakov V M .Calculation of stress-strain state for an over-goaf rock mass[J]. Journal of Mining Science, 2009, 45(5): 420.
3 Hu Y , Li X .Bayes discriminant analysis method to identify risky of complicated goaf in mines and its application[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 425-431.
4 廖学东, 高明中 .开采方案对地表移动影响的数值模拟[J].采矿与安全工程学报, 2008,25(2):226-230.
Liao Xuedong , Gao Mingzhong .Numerical simulation of effect of mining scheme on ground movement[J].Journal of Mining and Safety Engineering, 2008,25(2):226-230.
5 Nie L , Zhang M , Jian H .Analysis of surface subsidence mechanism and regularity under the influence of seism and fault[J]. Natural Hazards, 2013, 66(2): 773-780.
6 Sheorey P R , Loui J P , Singh K B , et al . Ground subsidence observations and a modified influence function method for complete subsidence prediction[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 801-818.
7 孙国权,李娟,胡杏保 .基于FLAC3D程序的采空区稳定性分析[J].金属矿山,2007,37(2):29-32.
Sun Guoquan , Li Juan , Hu Xingbao .FLAC3D-Based stability analysis of mined-out area[J].Metal Mine, 2007,37(2):29-32.
8 祁建东,高永涛,韩浩亮 .河流下伏采空区地表沉降规律及处治技术研究[J].金属矿山,2015,35(2):26-31.
Qi Jiandong , Gao Yongtao , Han Haoliang . Research on the surface subsidence regularity and treatment technique of goaf underlying river[J]. Metal Mine,2015,35(2):26-31.
9 王彦玮,张忠辉,邱俊刚,等 .山东望儿山金矿地表沉陷数值模拟研究[J].黄金科学技术,2011,19(3):72-76.
Wang Yanwei , Zhang Zhonghui , Qiu Jungang , et al . Numerical simulation of mining-induced subsidence in Wang’ershan gold mine,Shandong Province[J]. Gold Science and Technology, 2011,19(3):72-76.
10 付建新,宋卫东,杜建华 .金属矿山采空区群形成过程中围岩扰动规律研究[J].岩土力学,2013(增1):508-515.
Fu Jianxin , Song Weidong , Du Jianhua . Study of disturbance law for wall rock while goaf group formation in metal mines[J].Rock and Soil Mechanics, 2013(Supp.1): 508-515.
11 谷中元,周科平 .基于蠕变试验的浅埋空区群结构时变力学特性研究[J].黄金科学技术,2018,26(4):511-519.
Gu Zhongyuan , Zhou Keping . Study on time-variant mechanics properties of shallow goaf group based on creep experiment [J].Gold Science and Technology, 2018,26(4): 511-519.
12 胡高建,杨天鸿,张飞,等 .复杂空区群回采围岩破坏模式及区域并行研究[J].采矿与安全工程学报,2017,34(3):565-572.
Hu Gaojian , Yang Tianhong , Zhang Fei , et al .Parallel computing technologies for the failure mode and area of surrounding rock in complex goafs [J]. Journal of Mining and Safety Engineering, 2017,34(3):565-572.
13 彭帅英 .高速公路下伏多层采空区地表沉陷数值模拟及预测研究[D].长春:吉林大学,2013.
Peng Shuaiying .Numerical Simulation and Ground Subsidence Prediction for Multilayer Goafs Underlaying Highway[D].Changchun : Jilin University,2013.
14 董羽,黄玉诚,邓和浪,等 .基于FLAC3D 的公路下压煤巷式充填开采的数值模拟分析[J].煤矿安全,2014, 45(6):163-165,169.
Dong Yu , Huang Yucheng , Deng Helang , et al .Simulation analysis of roadway backfilling mining under highway based on FlAC3D[J].Safety in Coal Mines, 2014, 45(6): 163-165,169.
15 童立元,邱钰,刘松玉,等 .高速公路与下伏煤矿采空区相互作用规律探讨[J].岩石力学与工程学报,2010(11):2271-2276.
Tong Liyuan , Qiu Yu , Liu Songyu , et al .Discussion of interaction law of expressway and underlying mine goafs [J].Chinese Journal of Rock Mechanics and Engineering, 2010(11): 2271-2276.
16 童立元,刘松玉,邱钰,等 .高速公路下伏采空区问题国内外研究现状及进展[J].岩石力学与工程学报,2004(7):1198-1202.
Tong Liyuan , Liu Songyu , Qiu Yu , et al .Current research state of problems associated with mined-out regions under expressway and future development [J].Chinese Journal of Rock Mechanics and Engineering, 2004(7):1198-1202.
17 童立元,刘松玉,邱钰 .高速公路下伏采空区危害性评价与处治技术 [M].南京:东南大学出版社,2006.
Tong Liyuan , Liu Songyu , Qiu Yu .Hazard Potential Evaluation and Treatment Technology of Highway Underlain Goaf [M]. Nanjing: Southeast University Press, 2006.
18 童立元,刘松玉,邱钰 .采空区对高速公路危害性特征与评价方法研究[J].公路交通科技,2005, 22(11):1-5.
Tong Liyuan , Liu Songyu , Qiu Yu .Hazard characteristics and the evaluation methods for mined-out region under expressways[J]. Journal of Highway and Transportation Research and Development, 2005, 22(11): 1-5.
19 孙琦,张向东,杜东宁,等 .浅埋采空区对路基稳定性影响的数值模拟[J].中国地质灾害与防治学报,2015, 26(2):127-131.
Sun Qi , Zhang Xiangdong , Du Dongning , et al . Numerical simulation of the impact of shallow seam goaf on highway safety[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(2): 127-131.
20 张普纲 .采空区高速公路路基破坏的数值模拟分析[J].煤矿开采,2012, 17(3):74-76,48.
Zhang Pugang . Numerical simulation of expressway roadbed over mined gob[J].Coal Mining Technology, 2012, 17(3): 74-76,48.
21 赵斌臣,郭广礼,吴承红 .高等级公路采动变性破坏数值模拟研究[J].工业安全与环保,2016, 42(3):36-40.
Zhao Binchen , Guo Guangli , Wu Chenghong . Numerical simulation study on high-class failure due to mining deformation[J]. Industrial Safety and Environmental Protection, 2016, 42(3): 36-40.
22 聂承凯,田志忠 .《采空区公路设计与施工技术细则》的解释与应用[J].中国公路,2011(18):116-119.
Nie Chengkai , Tian Zhizhong . Interpretation and application of Techinicals for Design and Construction of Mined-out Area Highway[J].China Highway, 2011(18): 116-119.
23 陈剑,苏跃宏 .交通荷载作用下公路路基动力特性的数值模拟研究[J].公路交通科技,2011, 28(5):44-48.
Chen Jian , Su Yuehong .Numerical simulation of dynamic performance of highway subgrade under traffic loads[J]. Journal of Highway and Transportation Research and Development, 2011, 28(5): 44-48.
[1] Rui LIANG,Ruili YU,Wenhai ZHOU,Xiaobin HUANG,Jianyong WANG,Zhengyu XIONG. Application of Air Interval Charge Blasting Model in Mining Room [J]. Gold Science and Technology, 2019, 27(3): 358-367.
[2] Xuebin XIE,Huchen XIONG,Herong XIE,Jiankun LI,Tingyu TIAN. Catastrophic Instability Model of Goaf Group System Considering Horizontal Loads [J]. Gold Science and Technology, 2019, 27(3): 368-377.
[3] Shikang QIN,Qingfa CHEN,Tingchang YIN. Connotation Differences and Research Progress of the Freeze-Thaw Damages of Rock and Rock Mass [J]. Gold Science and Technology, 2019, 27(3): 385-397.
[4] Feng LIU,Zhaokun WANG,Fengshan MA,Bo WANG,Jianbo WANG,Chunlei DONG. Current Situation and Prospect of Destressing Techniques in Deep Mine [J]. Gold Science and Technology, 2019, 27(3): 425-432.
[5] Chuanfeng FANG,Jinmiao WANG,Shanbing LI,Mingtao JIA. Numerical Simulation Research of Natural Caving Method Based on PFC2D-DFN [J]. Gold Science and Technology, 2019, 27(2): 189-198.
[6] Chun WANG,Cheng WANG,Zuqiang XIONG,Luping CHENG,Huaibin WANG. Deformation Characteristics of the Surrounding Rock in Deep Mining Roadway Under Dynamic Disturbance [J]. Gold Science and Technology, 2019, 27(2): 232-240.
[7] Nao LV,Haibo WANG. Numerical Simulation of Collapse Disaster Before and After Weakening of Thick and Hard Roof [J]. Gold Science and Technology, 2019, 27(2): 257-264.
[8] Conglu WANG,Tong LI. Analysis of Influence of Deep Mine’s Linear Heat Source on Effective Ventilation Based on Ventsim Software [J]. Gold Science and Technology, 2019, 27(2): 271-277.
[9] Xiang LI,Zhen HUAI,Xibing LI,Zhuoyao ZHANG. Study on Fracture Characteristics and Mechanical Properties of Brittle Rock Based on Crack Propagation Model [J]. Gold Science and Technology, 2019, 27(1): 41-51.
[10] Jinguo XU,Xingguo DAI,Zezheng YAN. Stability Evaluation of Rock-soil Slope Based on D-S Evidence Theory and Normal Degree of Membership [J]. Gold Science and Technology, 2018, 26(6): 780-787.
[11] Chong CHEN,Xibing LI,Fan FENG. Numerical Study on Damage Zones of the Induced Roadway Surrounding Rock [J]. Gold Science and Technology, 2018, 26(6): 771-779.
[12] Zilong ZHOU,Yifan WANG,Changtao KE. Reliability Evaluation of Pillars System Based on Domino Failure Effect [J]. Gold Science and Technology, 2018, 26(6): 729-735.
[13] Liansheng LIU,Qingliang ZHONG,Lei YAN,Wen ZHONG,Longhua LIANG. Measurement of Sound Waves to Study Cumulative Damage Effect on Saturated Rock Under Frequent Production Blast Loading [J]. Gold Science and Technology, 2018, 26(6): 750-760.
[14] Guang LI,Fengshan MA,Gang LIU,Jie GUO,Huigao GUO,Yongyuan KOU. Study on Supporting Parametric Optimizing Design and Evaluate Supporting Effect of Deep Roadway in Jinchuan Mine [J]. Gold Science and Technology, 2018, 26(5): 605-614.
[15] Bo PENG. Numerical Simulation Study of Seepage Stability of Mudstone Slope with Dif-ferent Rainfall Types Coupled with Sudden Drop of Reservoir Water Level [J]. Gold Science and Technology, 2018, 26(5): 647-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Chu-Fang, XU Yong-An, CHAO Yin-Yin, WANG Mei-Juan, ZHANG Dai, LIU Jun, SUN Liang-Liang. Looking for Strata Bound Type Gold Deposit in Liaodong Metallogenic Belt[J]. J4, 2010, 18(3): 59 -62 .
[2] LI Bin, JU Hai-Xiang, YANG Mu, DU Gao-Feng, HUI Ji-Kang, WANG Tian-Guo. [J]. J4, 2010, 18(4): 17 -21 .
[3] JIANG Qi, WANG Rong-Chao. [J]. J4, 2010, 18(4): 37 -40 .
[4] YUAN Dong-Cheng, XU Xiao-Feng. [J]. J4, 2010, 18(4): 47 -49 .
[5] LIU Yuan-Hua, YANG Gui-Cai, ZHANG Lun, JI Jin-Zhong, LI Wen-Liang. Petrology and Geochemistry of Granites in Yangshan Ultra-large Gold Deposit,West Qinling[J]. J4, 2010, 18(6): 1 -7 .
[6] LIU Dong-Hai, LIU Xin-Hui. Research on the Characteristics of Pyrite and its Gold -bearing Properties of Zhaishang Oversized Gold Deposit in Western Qinling[J]. J4, 2010, 18(6): 8 -12 .
[7] HUANG Jian-Jun, LI Tian-En, FAN Gong-Ke. Discussion on Geological Setting of Metallogenic and Prospecting Potentiality of Daxinganling Region[J]. J4, 2010, 18(6): 13 -17 .
[8] ZHANG Chao, XIAO Xiao-Jiang. Geochemical Characteristics of Granite in Ningchanhe Area,North Qilian[J]. Gold Science and Technology, 2011, 19(1): 6 -10 .
[9] ZHANG Yan, SHANG Qian. Research Progress of Gold Deposits of Ductile Shear Zone——Taking Ailaoshan Gold Zone as an Example[J]. J4, 2011, 19(1): 11 -15 .
[10] ZHANG Huaquan,ZHANG Weixin,LI Hongjie. Ore—-formation Conditions and Exploration Orientation of the Gold Deposite in Jiaolai Basin,Shandong Province[J]. J4, 2008, 16(2): 12 -17 .