img

Wechat

Adv. Search

Gold Science and Technology ›› 2019, Vol. 27 ›› Issue (3): 358-367.doi: 10.11872/j.issn.1005-2518.2019.03.358

• Mining Technology and Mine Management • Previous Articles    

Application of Air Interval Charge Blasting Model in Mining Room

Rui LIANG1(),Ruili YU1(),Wenhai ZHOU1,Xiaobin HUANG2,Jianyong WANG3,Zhengyu XIONG3   

  1. 1. School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu,China
    2. Institute of Explosion Technology, Fuzhou University, Fuzhou 350116, Fujian,China
    3. Zijin Mining Construction Co. , Ltd. , Longyan 364200, Fujian,China
  • Received:2018-06-16 Revised:2018-11-22 Online:2019-06-30 Published:2019-07-09
  • Contact: Ruili YU E-mail:liangr@lut.cn;18809425883@163.com

Abstract:

Aiming at the problems of excessive blasting vibration and impact,high bulk rate,large vibration and blasting hazard effects in the process of deep hole lateral collapse blasting in underground mining,ANSYS/LS-DYNA software based on ALE algorithm is adopted in this paper.The program established a numerical model for the blasting of air-deck charge structures with four different air column lengths and different charge amounts.Firstly,using the initial impact pressure theory analysis,theoretically deducing the stress at different distances from the charging section,the stress peak is increased at the charging section,reduced at the air section,and the stress distribution in the middle of the air section is superimposed and analyzed.Then,using ANSYS/LS-DYNA software,the explosion stress field in the rock mass and the free surface of the collapse is numerically simulated when the charge structure is blasted.It shows that when the charge is the same within a certain engineering range,the effective stress decreases with the increase of the length of the air column.When the length of the air column is the same,the larger the charge is,the larger the effective stress is.The peak value of the stress appears to be the largest at the charging section,and it is reduced at the air section.The law of minimum stress in the middle is basically consistent with the theoretical analysis.By analyzing the effective stress peaks of the four air-deck charge models,it is obtained that within a certain engineering range,the effective stress decreases with the increase of the length of the air column in the case of the same charge.When the air column length is the same,the larger the charge,the greater the effective stress.The longer the length of the air column,the longer the length of the air column,the more stable the effective stress distribution,and the more uniform the explosion energy distribution.By extracting the effective stress peaks of the key elements on the free surface of each scheme,the effective stress peak curve was drawn,and the Von Mises yield criterion is used to judge whether the rock is damaged,and the vibration response speed of the particle on the free surface of the collapse is reflected.The effective peak of the unit on the surface and the peak of the unit synthesis speed was compared to select the best air-deck charge structure.

Key words: air-deck charge, charge structure optimization, numerical simulation, effective stress, synthetic speed, Von Mises yield criterion, explosive stress field, Starfield superposition method

CLC Number: 

  • TU44

Fig.1

Relationship curve between stress wave peak and air separation layer ratio"

Fig.2

Relationship curve between positive pressure action time and air separation layer ratio"

Fig.3

Stress superposition analysis diagram of air section of air interval charge"

Fig.4

Schematic of mining technology"

Fig.5

Forming process of collapse blasting chunks"

Table 1

Explosive materials and state equation"

参数名称 数值 参数名称 数值
ρ e/(g·cm-3 1.20 R1 4.2
D/(m·s-1 4 000 R2 0.9
P cj/GPa 7.4 ω 0.15
A/GPa 214.4 E 0/GPa 4.192
B/GPa 0.182

Table 2

Rock material parameters"

参数名称 数值 参数名称 数值
密度/(g·cm-3 3.8 切线模量/MPa 150
弹性模量E/GPa 25 β 1
泊松比 0.25 C/s-1 2.5
屈服应力/MPa 75

Table 3

Air cushion material parameters"

参数名称 数值 参数名称 数值
密度/(kg·m-3) 1.29 C 4 0.4
C 0 0 C 5 0.4
C 1 0 E 0 2.5×105
C 2 0 V 0 1.0
C 3 0

Fig.6

Structural schematic of four kinds of air-deck charge"

Fig.7

Blasting numerical model"

Fig.8

Effective stress"

Fig.9

Peak distribution of axial effective stress along blasthole"

Fig.10

Effective stress peak distribution on free surface"

Fig.11

Velocity of the unit synthesis velocity on free surface"

1 Liu X L , Luo K B , Li X B ,et al .Cap rock blast caving of cavity under open pit bench[J].Transactions of Nonferrous Metals Society of China,2017,27(3):648-655.
2 Li Q Y , Liu K , Li X B ,et al .Cutting parameter optimization for one-step shaft excavation technique based on parallel cutting method[J].Transactions of Nonferrous Metals Society of China,2018,28(7):1413-1423.
3 Shi X Z , Qiu X Y , Zhou J ,et al .Application of Hilbert-Huang transform based delay time identification in optimization of short millisecond blasting[J].Transactions of Nonferrous Metals Society of China,2016,26(7):1965-1974.
4 Park D , Jeon S .Reduction of blast-induced vibration in the direction of tunneling using an air-deck at the bottom of a blasthole[J].International Journal of Rock Mechanics and Mining Science,2010,47(5):752-761.
5 Zhang Z C , Wen X , Lin M Q .Blasting experiment and application effect of different air-decked charge positions[J].Industrial Minerals and Processing,2011,40(6):27-30.
6 Moxon N T , Mead D , Richardson S B .Air-decked blasting technique:Some collaborative experiments[J].Transactions of the Institution of Mining and Metallurgy,Section A:Mining Industry,1993,102:25-30.
7 Kumar K V .Air-decking using gasbags[J].Journal of Mines,Metals and Fuels,1995,43(8):244-249.
8 刘优平,龚敏,黄刚海 .深孔爆破装药结构优选数值分析方法及其应用[J].岩土力学,2012,33(6):1883-1888.
Liu Youping , Gong Min , Huang Ganghai .Numerical analysis method for optimizing charging structure of deep-hole blasting and its application[J].Rock and Soil Mechanics,2012,33(6):1883-1888.
9 叶海旺,康强,赵明生,等 .节理裂隙岩体空气间隔装药爆破试验研究[J].爆破,2012,29(2):26-30.
Ye Haiwang , Kang Qiang , Zhao Mingsheng ,et al .Experimental study on air-decking charging explosion in jointed and fractured rock mass[J].Blasting,2012,29(2):26-30.
10 朱强,陈明,郑炳旭,等 .空气间隔装药预裂爆破岩体损伤分布特征及控制技术[J].岩石力学与工程学报,2016,35(增1):2758-2765.
Zhu Qiang , Chen Ming , Zheng Bingxu ,et al .Distribution and control technology of rock damage induced by air-deck charge presplitting blasting [J].Chinese Journal of Rock Mechanics and Engineering,2016,35(Supp.1):2758-2765.
11 罗周全,齐飞祥,谭浪浪 .基于LS-DYNA的间柱开采贫损爆破控制技术[J].科技导报,2014,32(28/29):79-84.
Luo Zhouquan , Qi Feixiang , Tan Langlang .Dilution and loss blasting control of pillar mining based on LS-DYNA[J].Science and Technology Review,2014,32(28/29):79-84.
12 朱红兵,卢文波,吴亮 .空气间隔装药爆破机理研究[J].岩土力学,2007,28(5):986-990.
Zhu Hongbing , Lu Wenbo , Wu Liang .Research on mechanism of air-decking technique in bench blasting[J].Rock and Soil Mechanics,2007,28(5): 986-990.
13 张迎吉,周建敏,徐文文,等 .不同位置空气间隔装药爆破减振和破碎效果试验[J].工程爆破,2015,21(1):15-19.
Zhang Yingji , Zhou Jianmin , Xu Wenwen ,et al .Experiment on effect of vibration reduction and rock fragmentation for different positions air-decking charge blasting[J].Engineering Blasting,2015,21(1): 15-19.
14 梁瑞,解丽娜,周文海,等 .基于不同空气间隔装药结构的爆破效果动力响应研究[J].中国安全生产科学技术,2018,14(7):175-180.
Liang Rui , Xie Lina , Zhou Wenhai ,et al .Research on dynamic response of blasting effect based on different air-deck charge structures[J].Journal of Safety Science and Technology,2018,14(7): 175-180.
15 吴亮,卢文波,钟冬望,等 .混凝土介质中空气间隔装药的爆破机理[J].爆炸与冲击,2010,30(1):58-64.
Wu Liang , Lu Wenbo , Zhong Dongwang ,et al .Blasting mechanism of air-decked charge in concrete medium[J].Explosion and Shock Waves,2010,30(1):58-64.
16 岳中文,杨仁树,陈岗,等 .切缝药包空气间隔装药爆破的动态测试[J].煤炭学报,2011,36(3):398-402.
Yue Zhongwen , Yang Renshu , Chen Gang ,et al .Dynamic test on silt-charge blasting of air-deck charge[J].Journal of China Coal Society,2011,36(3):398-402.
17 池恩安,梁开水,赵明生 .孔底空气间隔装药降振试验研究[J].煤炭学报,2012,37(6):944-950.
Chi En’an , Liang Kaishui , Zhao Mingsheng .Experimental study on vibration reduction of the hole-bottom air space charging[J].Journal of China Coal Society,2012,37(6):944-950.
18 吴亮,朱红兵,卢文波 .空气间隔装药爆破研究现状与探讨[J].工程爆破,2009,15(1):16-19.
Wu Liang , Zhu Hongbing , Lu Wenbo .An overview and discussion of the study on air-decking blasting[J].Engineering Blasting,2009,15(1):16-19.
19 王凯,张智宇,高腾飞 .某露天采场深孔台阶爆破空气间隔装药的应用[J].爆破,2018,35(1):80-85.
Wang Kai , Zhang Zhiyu , Gao Tengfei .Application of air interval charge in deep-hole bench blasting in open-pit mine[J].Blasting,2018,35(1):80-85.
20 Henrych J .爆炸动力学及其应用[M].北京:科学出版社,1978.
Henrych J .Explosion Dynamics and Its Applications[M].Beijing:Science Press,1978.
21 张志呈 .定向断裂控制爆破[M].重庆:重庆出版社,2000.
Zhang Zhicheng .Directional Fracture Controlled Blasting[M].Chongqing:Chongqing Publishing House,2000.
22 周传波 .深孔爆破一次成井模拟优化与应用研究[D].武汉:中国地质大学,2004.
Zhou Chuanbo .Study on Simulation Optimization and Application of Shaft Formation by One Deep-hole Blasting[D].Wuhan:China University of Geosciences,2004.
23 罗忆,卢文波,陈明,等 .爆破振动安全判据研究综述[J].爆破,2010,27(1):14-22.
Luo Yi , Lu Wenbo , Chen Ming ,et al .View of research on safety criterion of blasting vibration[J].Blasting,2010,27(1):14-22.
24 夏祥 .爆炸荷载作用下岩体损伤特征及安全阈值研究[D].武汉:中国科学院大学,2006.
Xia Xiang .Study on Damage Characteristics and Safety Threshold of Rock Vibration by Blast[D].Wuhan:Universtiy of Chinese Academy of Sciences,2006.
[1] Nao LV,Haibo WANG. Numerical Simulation of Collapse Disaster Before and After Weakening of Thick and Hard Roof [J]. Gold Science and Technology, 2019, 27(2): 257-264.
[2] Conglu WANG,Tong LI. Analysis of Influence of Deep Mine’s Linear Heat Source on Effective Ventilation Based on Ventsim Software [J]. Gold Science and Technology, 2019, 27(2): 271-277.
[3] Chun WANG,Cheng WANG,Zuqiang XIONG,Luping CHENG,Huaibin WANG. Deformation Characteristics of the Surrounding Rock in Deep Mining Roadway Under Dynamic Disturbance [J]. Gold Science and Technology, 2019, 27(2): 232-240.
[4] Chuanfeng FANG,Jinmiao WANG,Shanbing LI,Mingtao JIA. Numerical Simulation Research of Natural Caving Method Based on PFC2D-DFN [J]. Gold Science and Technology, 2019, 27(2): 189-198.
[5] Xiang LI,Zhen HUAI,Xibing LI,Zhuoyao ZHANG. Study on Fracture Characteristics and Mechanical Properties of Brittle Rock Based on Crack Propagation Model [J]. Gold Science and Technology, 2019, 27(1): 41-51.
[6] Chong CHEN,Xibing LI,Fan FENG. Numerical Study on Damage Zones of the Induced Roadway Surrounding Rock [J]. Gold Science and Technology, 2018, 26(6): 771-779.
[7] Liansheng LIU,Qingliang ZHONG,Lei YAN,Wen ZHONG,Longhua LIANG. Measurement of Sound Waves to Study Cumulative Damage Effect on Saturated Rock Under Frequent Production Blast Loading [J]. Gold Science and Technology, 2018, 26(6): 750-760.
[8] Bo PENG. Numerical Simulation Study of Seepage Stability of Mudstone Slope with Dif-ferent Rainfall Types Coupled with Sudden Drop of Reservoir Water Level [J]. Gold Science and Technology, 2018, 26(5): 647-655.
[9] Guang LI,Fengshan MA,Gang LIU,Jie GUO,Huigao GUO,Yongyuan KOU. Study on Supporting Parametric Optimizing Design and Evaluate Supporting Effect of Deep Roadway in Jinchuan Mine [J]. Gold Science and Technology, 2018, 26(5): 605-614.
[10] Jianhua HU,Qifan REN,Zhonghua QI,Jiwei ZHANG. Regress Optimize Model of Limit Exposure Area to Stope in Wohushan Iron Mine [J]. Gold Science and Technology, 2018, 26(4): 503-510.
[11] HU Guiying, LIU Kewei, DU Xin, LI Xiaohan. Research on Smooth-cutting Method and Its Application in Tunnel Excavation [J]. Gold Science and Technology, 2018, 26(3): 349-356.
[12] WANG Haibo, WEI Guoli, ZONG Qi, XU Ying. Numerical Simulation and Application Research on Joint Development Rock Roadway Blasting Excavation [J]. Gold Science and Technology, 2018, 26(3): 342-348.
[13] YANG Mingcai, SHENG Jianlong, YE Zuyang, DONG Shu. Analysis of Sensitivity Factors of Open-pit Mine Slope Stability and Impact Based on FlAC3D [J]. Gold Science and Technology, 2018, 26(2): 179-186.
[14] REN Weicheng,QIAO Dengpan,ZHOU Zhiwei. Research on the Change Law of Volume Fraction of Tailings with Tailings Silo Height in Vertical Tailings Silo [J]. Gold Science and Technology, 2018, 26(1): 64-73.
[15] MA Fengshan,LI Kepeng,DU Yunlong,HOU Chenglu,LI Wei2,ZHANG Guodong. Analysis on the Possible Failure Modes of Water Burst Prevention Structures of F1 Fault Caused by Undersea Mining in Sanshandao Gold Mine [J]. Gold Science and Technology, 2017, 25(5): 47-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!