img

Wechat

Adv. Search

Gold Science and Technology ›› 2019, Vol. 27 ›› Issue (1): 89-96.doi: 10.11872/j.issn.1005-2518.2019.01.089

    Next Articles

Study and Application of Large Fill-times-line Pressure Filling Technology in a Gold Mine

Chao YANG1,2,Lijie GUO1,2,*(),Jie WANG3,Caixing SHI1,2,Wenyuan XU1,2   

  1. 1. Beijing General Research Institute of Mining and Metallurgy Technology Group,Beijing 100260,China
    2. National Center for International Joint Research on Green Metal Mining NCGMM,Beijing 100260,China
    3. Shandong University of Technology,Zibo 255000,Shandong,China
  • Received:2018-04-23 Revised:2018-08-08 Online:2019-02-28 Published:2019-03-19
  • Contact: Lijie GUO E-mail:ljguo264@126.com

Abstract:

The maximum filling geometrical line of the system above +0 m middle section in a gold mine in Jiangxi was close to 40, and it was difficult to realize the self-flowing of the filling slurry, and there were a large number of recoverable resources in this area.In view of the above problem it was proposed to use the large line pressure filling technology to achieve filling of +0 m middle section of the mine, so that the above resources could be recovered.In order to determine the optimal process parameters of the filling slurry pipeline, this paper firstly analyzed the basic properties of the tailings, the main chemical composition of the graded tailings was SiO2 and Al2O3.This component was beneficial to increase the strength of filling body.The physical properties of the graded tailings was 2.74, the bulk density was 1.45 t/m3, and the porosity of the loose tailings was 47.1 % .The particle size composition test results show that -37 μm only accounts for 5.62 % , and -74 μm accounts for 14.36 % , indicating that the fractionated tailings has less fine particles, the whole grain large diameter is an ideal filling aggregate, and selected the corresponding hydraulic model for pipeline transportation.Through the hydraulic calculation of the filling slurry pipeline, the critical flow velocity under different conveying conditions was determined.Combined with the mining filling process parameters, the resistance loss along the pipeline under different filling conditions was calculated.According to the existing engineering conditions of the mine and the scope of filling services, two sets of pipeline transportation system layout schemes were designed.Scheme 1: The longest filling pipeline in the middle section of 100 m was 1 728 m, the geometric filling line was 42.1, the conveying resistance was 2.84 MPa (concentration was 68 % , the diameter was 100 mm).The longest filling pipeline in the middle section of 75 m was 1 956 m, the geometric filling line was 29.6, the conveying resistance was 2.88 MPa.The longest filling line in the middle section of 50 m was 1 668 m, the geometric filling line was 18.3, and the total head loss was 1.86 MPa. Scheme 2: The longest filling pipeline in the middle section of 100 m was 1 551 m, the geometric filling line was 37.8, the conveying resistance was 2.48 MPa (concentration was 68 % , the diameter was 100 mm).The longest filling pipeline in the middle section of 75 m was 1 852 m, the geometric filling line was 28.1, the conveying resistance was 2.67 MPa.The longest filling line in the middle section of 50 m was 1 731 m, the geometric filling line was 19, and the conveying resistance was 1.99 MPa.Compared the two pipeline transportation system layout schemes and pipeline transportation resistance loss, filling geometric line was calculated.The scheme 2 was determined,and the 120 m adit filling slurry pipeline transportation scheme was the best pipeline transportation system layout scheme for the project.At the same time, combined with the filling slurry hydraulics calculation results and the filling slurry pipeline layout scheme, the optimal working speed of filling slurry pipeline transportation, parameters of filling slurry and pipeline parameters were determined.Finally, combined with the resistance loss along the pipeline, the layout scheme of the pipeline transportation system and the transportation parameters of the filling slurry pipeline, the type of filling pump and related technical parameters were selected, which the pump outlet pressure was 5 MPa.The pump flow rate was 60 m3/h.After the on-site industrial application, all the operation indexes met the design requirements, and the operation condition was good, and the volume of filling goaf was 1.396 m3(cement filling accounted for 20 % and water sand filling accounted for 80 % ), which could increase the economic benefit of the mine by 10.12409 million yuan.

Key words: large fill-times-line, pressure filling, minefill, pipeline transportation, transport resistance, critical velocity

CLC Number: 

  • TD853

Table 1

Analysis of chemical composition of tailings(%)"

成分 质量分数 成分 质量分数
SiO2 58.4 P2O5 0.141
Fe2O3 6.02 TiO2 0.822
Al2O3 18.5 CuO 0.0027
CaO 3.25 As2O3 0.111
MgO 2.34 SO3 0.329
Na2O 3.27 Au 0.52
K2O 3.04 Ag 3.21

"

目数 粒径/μm 分计/% 累计/%
+40 +425 24.88 24.88
-40~+60 -425~+250 12.16 37.04
-60~+80 -250~+180 11.29 48.33
-80~+100 -180~+150 21.36 69.69
-100~+140 -150~+106 9.97 79.66
-140~+200 -106~+74 5.98 85.64
-200~+400 -74~+37 8.74 94.38
-400 -37 5.62 100.00

Table 3

Calculation results of critical flow velocity (m/s)"

管径D/m 不同料浆质量浓度下的临界流速
66% 68% 70% 72%
0.080 1.10 1.09 1.07 1.06
0.100 1.23 1.22 1.20 1.18
0.125 1.38 1.36 1.34 1.32
0.150 1.51 1.49 1.47 1.45

"

管径D/m 不同料浆质量浓度下的临界流速/(m ? s-1)
66% 68% 70% 72%
0.080 1.65 1.64 1.61 1.59
0.100 1.85 1.83 1.80 1.77
0.125 2.07 2.04 2.01 1.98
0.150 2.27 2.24 2.21 2.18

Table 5

Calculation results of resistance loss under"

充填浓度/%

工作流速

/(m·s-1)

充填流量

/(m3·h-1)

沿程阻力损失(mH2O/m) 沿程阻力损失/(Pa·m-1)
66 1.85 59.06 0.1407 1 379.82
68 1.83 60.48 0.1522 1 492.59
70 1.80 61.89 0.1744 1 710.31
72 1.77 63.59 0.1991 1 952.53

Fig.1

Transportation plan of filling slurry pipeline in 118 m inclined well"

Table 6

Calculation results of stowing gradient in each middle section of program Ⅰ"

中段/m 高差/m 勘探线 总长/m 几何倍线
100 41 315 1 036 25.3
100 41 317 1 096 26.7
100 41 319 1 183 28.9
100 41 2 1 302 31.8
100 41 4 1 357 33.1
100 41 8 1 468 35.8
100 41 12 1 617 39.4
100 41 16 1 728 42.1
75 66 315 1 133 17.2
75 66 317 1 183 17.9
75 66 319 1 256 19.0
75 66 2 1 573 23.8
75 66 4 1 623 24.6
75 66 8 1 732 26.2
75 66 12 1 854 28.1
75 66 16 1 956 29.6
50 91 315 1 058 11.6
50 91 317 1 138 12.5
50 91 319 1 197 13.1
50 91 323 1 305 14.3
50 91 327 1 406 15.5
50 91 2 1 577 17.3
50 91 4 1 668 18.3

Fig.2

Transportation plan of filling slurry pipeline in 120 m adit"

Table 7

Calculation results of stowing gradient in each middle section of program Ⅱ"

中段 高差/m 勘探线 总长/m 几何倍线
120 21 307 599 28.5
120 21 311 761 36.2
120 21 315 862 41.4
120 21 319 969 46.1
120 21 4 1 123 53.3
120 21 8 1 225 58.3
120 21 12 1 347 64.1
120 21 16 1 459 69.5
100 41 315 953 23.2
100 41 317 1 003 24.5
100 41 319 1 060 25.9
100 41 2 1 153 28.1
100 41 4 1 214 29.6
100 41 8 1 315 32.1
100 41 12 1 438 35.1
100 41 16 1 551 37.8
75 66 315 1 034 15.7
75 66 317 1 084 16.4
75 66 319 1 157 17.5
75 66 2 1 466 22.2
75 66 4 1 517 22.9
75 66 8 1 627 24.7
75 66 12 1 749 26.5
75 66 16 1 852 28.1
50 91 315 1 118 12.2
50 91 317 1 198 13.2
50 91 319 1 257 13.8
50 91 323 1 366 15.0
50 91 327 1 468 16.0
50 91 2 1 639 18.0
50 91 4 1 731 19.0
1 杨超,王林,韦章能,等 .天马山硫金矿段高大型复杂空区群充填[J].有色金属工程,2015,5(增1):50-54.
Yang Chao , Wang Lin , Wei Zhangneng ,et al .Filling for high-large comples goaf masses of Tianmashan S-Au ore block[J]. Nonferrous Metals Engineering,2015,5(Supp.1):50-54.
2 刘春琦,温军锁,宋士生,等 .金厂峪金矿充填尾砂基本性能试验研究[J].黄金,2014,35(7):41-44.
Liu Chunqi , Wen Junsuo , Song Shisheng ,et al .Experimental study on basic performance of Jinchangyu filling tailings[J].Gold,2014,35(7):41-44.
3 彭志华 .废石尾砂胶结充填力学研究进展[J].中国矿业,2008,17(9):83-85.
Peng Zhihua .Advances in mechanics of cemented rock-tailings fill research[J].China Mining Magazine,2008,17(9):83-85.
4 钱鸣高 .绿色开采的概念与技术体系[J].煤炭科技,2003(4):1-3.
Qian Minggao .Technological system and green mining concept[J].Coal Science and Technology Magazine,2003(4):1-3.
5 杨志强,王永前,高谦,等 .金川镍矿废弃物在充填采矿中利用现状与展望[J].矿产综合利用,2017(3):22-28.
Yang Zhiqiang , Wang Yongqian , Gao Qian ,et al .Present research situation and prospect of nickel utilization of wastes in filling mining technology in Jinchuan mine [J].Multipurpose Utilization of Mineral Resources,2017(3):22-28.
6 张飞,张衡,刘德峰,等 .尾砂胶结充填在某金属矿采空区处理中的应用[J].有色金属(矿山部分),2013,65(4):16-19.
Zhang Fei , Zhang Heng , Liu Defeng ,et al .Application of tailing-cemented filling in goaf management of a metal mine [J]. Nonferrous Metals(Mine Section),2013,65(4):16-19.
7 孙德民,任建华,焦华喆,等 .某矿全尾砂胶结充填物料性能研究[J].金属矿山,2012,41(3): 6.
Sun Demin , Ren Jianhua , Jiao Huazhe ,et al .Study on the properties of the unclassified tailings cemented backfill materials in a mine[J].Metal Mine,2012,41(3):6.
8 刘同有 .充填采矿技术与应用[M].北京:冶金工业出版社,2003:17-19.
Liu Tongyou .The Technology and Application in Backfilling Mining[M].Beijing:Metallurgical Industry Press,2003:17-19.
9 李安,曹书荣,刘宏波, 等 .浆体管道输送临界流速的研究[J].矿冶工程,2016,36(1):26.
Li An , Cao Shurong , Liu Hongbo ,et al .Critical flow rate for slurry pipeline transportation[J].Mining and Metallurgical Engineering,2016,36(1):26.
10 杨超 .金属矿山尾矿高浓度管道输送技术研究[D].淄博:山东理工大学,2011.
Yang Chao .Technical Research in High Concentrations of Tailings Pipeline for Metal Mines[D].Zibo:Shandong University of Technology,2011.
11 王新民,古德生,张钦礼 .深井矿山充填理论与管道输送技术[M].长沙:中南大学出版社,2010:1-6.
Wang Xinmin , Gu Desheng , Zhang Qinli .Filling Theory and Pipeline Transportation Technology in Deep Mine[M].Changsha:Central South University Press,2010:1-6.
12 汪东,许振良,孟庆华 .浆体管道输送临界流速的影响因素及计算分析[J].管道技术与设备,2004(6):1-2.
Wang Dong , Xu Zhenliang , Meng Qinghua .Effect factors and calculating analysis of critical flow velocity in slurry pipeline transportation[J].Pipeline Technique and Equipment,2004(6):1-2.
13 邱灏,曹斌,夏建新 .粗颗粒物料管道水力输送不淤临界流速计算[J].水利水运工程学报,2016(6):103-108.
Qiu Hao , Cao Bin , Xia Jianxin .Non-silting critical velocity calculation of coarse-grained materials in hydraulic pipeline[J].Hydro-Science and Engineering,2016(6):103-108.
14 陈琴瑞,李甲 .浆体管道输送临界流速经验公式适宜性分析[J].中国矿山工程,2015,44(6):73-75.
Chen Qinrui , Li Jia .Suitability analysis of empirical formulas for critical velocity in slurry pipeline transportation[J].China Mine Engineering,2015,44(6):73-75.
15 杨超,郭利杰,张林,等 .铜尾矿流变特性与管道输送阻力计算[J].工程科学学报,2017,39(5):663-668.
Yang Chao , Guo Lijie , Zhang Lin , et al .Study of the rheological characteristics of copper tailings and calculation of resistance in pipeline transportation[J].Chinese Journal of Engineering,2017,39(5):663-668.
16 王新民,丁德强,肖富国,等 .膏体管道输送阻力损失研究[J]. 金属矿山,2007,37(5): 29-31.
Wang Xinmin , Ding Deqiang , Xiao Fuguo , et al .Study on resistance loss in paste piping transportation[J].Metal Mine, 2007,37(5): 29-31.
17 张亮,罗涛,朱志成,等 . 高浓度充填料浆流变特性及其管道输送阻力损失研究[J].中国矿业, 2014, 23(增2): 301.
Zhang Liang , Luo Tao , Zhu Zhicheng ,et al .Study on the rheological characteristics of high-concentration filling mixture and its resistance loss in pipeline transportation[J].China Mining Magazine,2014,23(Supp.2):301.
18 王佩勋 .矿山充填料浆水力坡度计算[J].中国矿山工程,2003,32(1):8-11.
Wang Peixun .Hydraulic gradient calculation of mine filling paste[J].China Mine Engineering,2003,32(1):8-11.
19 吴爱祥,刘晓辉,王洪江,等 .考虑时变性的全尾膏体管输阻力计算[J].中国矿业大学学报,2013,42(5):736.
Wu Aixiang , Liu Xiaohui , Wang Hongjiang , et al .Calculation of resistance in total tailings paste piping transportation based on time-varying behavior[J].Journal of China University of Mining & Technology,2013,42(5): 736.
20 闵忠鹏,刘龙琼,杨准,等 .胶结充填过程中的成本管控[J].黄金,2017,38(3):44-49.
Min Zhongpeng , Liu Longqiong , Yang Zhun , et al .Cost control in the process of cement filling[J].Gold,2017,38(3):44-49.
21 赵宇新,李绪忠,万俊力 .高浓度尾矿输送系统设计方法与实践[J].金属矿山,2010,39(10):88-89.
Zhao Yuxin , Li Xuzhong , Wan Junli .Design method and practice for transporting tailings slurry with high density[J].Metal Mine,2010,39(10): 88-89.
22 郭三军 .加压泵管道输送充填技术研究与实践[J].矿冶工程,2012,32(4):24-26.
Guo Sanjun .Research and practice of backfill technology with pipeline transportation by pressure pump[J].Mining and Metallurgical Engineering,2012,32(4):24-26.
23 朱光明 .永平铜矿坑采充填加压输送系统技术探讨[J].铜业工程,2017(5):97-100.
Zhu Guangming .Discussion on the technology of back filling pressurizing transportation system in Yongping copper mine’s underground mining operation[J]. Copper Engineering,2017(5):97-100.
24 周礼,林卫星,欧任泽 .全粒级碎石胶结充填材料及泵送试验研究[J].黄金,2017,38(6):37-40.
Zhou Li , Lin Weixing , Renze Ou .Experimental research on full graded gravel cement filling materials and their pumping[J].Gold,2017,38(6):37-40.
25 付自国,郭忠林,殷国华,等 .全尾砂胶结充填加压泵送系统应用研究[J].煤矿机械,2016(11):131-134.
Fu Ziguo , Guo Zhonglin , Yin Guohua , et al .Research on application of whole tailing cemented filling and pumping system[J].Coal Mine Machinery,2016(11):131-134.
[1] YANG Bo,YANG Shijiao,WANG Fulin. Numerical Simulation of Cemented Filling Pipeline Transportation of High-density Whole Tailing Based on ANSYS/FLOTRAN [J]. Gold Science and Technology, 2015, 23(5): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!