img

Wechat

Adv. Search

Gold Science and Technology ›› 2018, Vol. 26 ›› Issue (6): 795-802.doi: 10.11872/j.issn.1005-2518.2018.06.795

Previous Articles     Next Articles

Optimization and Application of Geometric Constraint Model for Boundary Optimization in Open Mine

Ju ZHANG1,2(),Liguan WANG1,2,*(),Huaqiang SONG1,2,Zhuli REN1,2,Lin BI1,2   

  1. 1. School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan,China
    2. Digital Mine Research Center, Central South University, Changsha 410083, Hunan,China
  • Received:2017-08-14 Revised:2018-01-25 Online:2018-12-31 Published:2019-01-24
  • Contact: Liguan WANG E-mail:zhangju@csu.edu.cn;wangliguan@dimine.net

Abstract:

The rationality and complexity of geometric constraint model directly affect the efficiency of model building, and then affect the speed of boundary optimization.To ensure the accuracy and improve the operation speed is the key point of the optimization of geometric constraint model.On the basis of summarizing the common fitting methods, a method of slope contour interpolation and an algorithm for quickly constructing mining cone by simplifying the geometric constraint relation were proposed.Based on the angle inverse interpolation fitting model, the discriminant method was proposed to improve the rationality and efficiency of the mining cone construction of ring search block for constructing the mining cone quickly under the condition of slope angle changing with azimuth and elevation.It is mentioned that the method of redundancy of mining cone removal that simplified the optimization process and improved the operation speed of mining cone construction. On the basis of constructing the value model, a set of nested pits was produced in batches, and the ultimate pit of the mine was selected when applied to an open-pit mine.

Key words: open pit optimization, bock model, slope angle, geometric constraint, inverse interpolation, mining cone construction, remove redundancy

CLC Number: 

  • TD804

Fig.1

Geometric constraint"

Fig.2

Mining cone of base block construction"

Fig.3

Block model and coordinate system"

Fig.4

Interpolation diagram"

Fig.5

Mining cone top view"

Fig.6

Schematic diagram of search range"

Fig.7

A-A profile of mining cone"

Fig.8

Simplified mining cone constraint model"

Table 1

Number of blocks in mining cone before and after remove redundancy"

层数l 开采锥块数/块
去降冗余前 第一次去冗余 第二次去冗余
0 34 15 3
1 26 10 3
2 16 7 2
3 11 7 3
4 6 5 1
5 2 2 2
6 1 1 1

Fig.9

Fe element grade distribution"

Table 2

Mining parameters"

参数 数值 参数 数值
采矿回采率 0.95 矿石体重/(t ? m - 3 3
贫化率 0.05 废石体重/(t ? m - 3 2.7
采矿成本/(元 ? t - 1 35 选矿回收率 0.9
废石开采成本/(元 ? t - 1 15 Fe元素价格/(元 ? t - 1 600
选矿成本/(元 ? t - 1 20

Table 3

Statistics of results"

嵌套坑 矿岩总量 剥采比 元素金属量/t 元素品位/% 价值/亿元
矿量/t 岩量/t 总计/t
1 7 648 952 16 139 288.72 23 788 240.72 2.11 2 309 983.504 30.20 4.63
2 9 005 698 21 163 390.3 30 169 088.3 2.35 2 683 698.004 29.80 4.95
3 23 669 398 57 753 331.12 81 422 729.12 2.44 6 816 786.624 28.80 11.54
4 38 956 254 122 322 637.6 161 278 891.6 3.14 11 141 488.64 28.60 14.52
5 53 589 467 193 993 870.5 247 583 337.5 3.62 14 897 871.83 27.80 14.03
6 70 163 956 287 672 219.6 357 836 175.6 4.10 19 716 071.64 28.10 14.34
7 88 463 690 346 777 664.8 435 241 354.8 3.92 24 150 587.37 27.30 17.02
8 95 638 614 367 252 277.8 462 890 891.8 3.84 25 631 148.55 26.80 17.22
9 105 474 247 395 528 426.3 501 002 673.3 3.75 27 950 675.46 26.50 18.88
10 115 774 376 426 049 703.7 541 824 079.7 3.68 29 638 240.26 25.60 16.86

Fig.10

Comparison of operation time before and after"

Table 4

Comparison of ore and rock quantity"

嵌套坑 矿量A1/t 矿量A2/t 岩量B1/t 岩量B2/t
1 7 648 900 7 648 972 16 139 288.72 16 139 100.5
2 9 005 698 9 005 581 21 163 390.3 21 163 125
3 23 669 398 23 669 526 57 753 331.12 57 753 029.25
4 38 956 254 38 955 819 122 322 637.6 122 322 068
5 53 589 467 53 589 301 193 993 870.5 193 993 029.2
6 70 163 956 70 163 329 287 672 219.6 287 671 605.3
7 88 463 690 88 463 059 346 777 664.8 346 777 011.8
8 95 638 614 95 638 153 367 252 277.8 367 251 420.7
9 105 474 247 105 473 805 395 528 426.3 395 526 512.1
10 115 774 376 115 774 008 426 049 703.7 426 047 066.4

Fig.11

Change chart of net present value and stripping ratio"

Fig.12

Change chart of ore and rock quantity"

1 李云,杨珊,钟福生 .基于有限元与极限平衡分析的露天矿边坡角优化[J].中国安全科学学报,2012,22(2):145.
Li Yun , Yang Shan , Zhong Fusheng .Rock slope angle optimization based on finite element method and limit equilibrium theory[J].China Safety Science Journal,2012,22(2):145.
2 Picard J C , Smith B T .Parametric maximum flows and the calculation of optimal intermediate contours in open pit mine design[J].Infor,2004,42(2):143-153.
3 王青,顾晓薇,胥孝川,等 .露天矿生产规划要素整体优化方法及其应用[J].东北大学学报(自然科学版),2014,35(12):1796-1800.
Wang Qing , Gu Xiaowei , Xu Xiaochuan ,et al .Holistic optimization of production planning elements and its application for open-pit mine[J].Journal of Northeastern University(Natural Science),2014,35(12):1796-1800.
4 Khodayari A A .A new algorithm for determining ultimate pit limits based on network optimization[J].Internet Journal Minning and Geology,2013,47(2):129-137.
5 张彤炜,王李管,龚元翔 .露天开采的境界优化算法研究及应用[J].金属矿山,2008,38(2):30-34.
Zhang Tongwei , Wang Liguan , Gong Yuanxiang .Study on algorithms for open-pit limit optimization and its application[J].Metal Mine,2008,38(2):30-34.
6 杨彪 .露天矿开采境界动态优化研究及应用[D].长沙:中南大学,2011.
Yang Biao .Study on Dynamical Optimization and Application of Open Pit Mine Limit[D].Changsha:Central South University,2011.
7 张延凯,李克庆,胡乃联,等 .露天矿境界优化LG算法初始有向图生成研究[J].煤炭学报,2015,40(增2):367-373.
Zhang Yankai , Li Keqing , Hu Nailian ,et al .A study of generating the initial directed graph for LG algorithm of open pit optimization[J].Journal of China Coal Society,2015,40(Supp.2):367-373.
8 Gilani S O , Sattarvand J .A new heuristic non-linear approach for modeling the variable slope angles in open pit mine planning algorithms[J].Acta Montanistica Slovaca,2015,20(4):251-259.
9 Khalokakaie R , Dowd P A , Fowell R J .Lerchs-Grossmann algorithm with variable slope angles[J].Transactions of the Institution of Mining and Metallurgy,2000,109(2):77-85.
10 黄俊歆,王李管,毕林,等 .改进的露天境界优化几何约束模型及其应用[J].重庆大学学报(自然科学版),2010,33(12):78-83.
Huang Junxin , Wang Liguan , Bi Lin ,et al .The improved geometrical constraint model of open-pit mine boundary optimum and its application[J].Journal of Chongqing University(Natural Science Edition),2010,33(12):78-83.
11 Gilani S O , Sattarvand J .A new heuristic non-linear approach for modeling the variable slope angles in open pit mine planning algorithms[J].Acta Montanistica Slovaca,2015,20(4):251-259.
12 Shishvan M S , Sattarvand J .Modeling of accurate variable slope angles in open-pit mine design using spline interpolation /modelowanie zmiennego kąta nachylenia stoku W projektowaniu kopalni odkrywkowych za pomocą interpolacji funkcjami sklejającymi (metodą spline’Ów)[J].Archives of Mining Sciences,2013,57(4):921-932.
13 王志民 .分形理论在距离幂次反比法估算矿体品位中的应用[J].中国锰业,1997,15(2):19-22.
Wang Zhimin .Application of fractal theory to the estimation of ore body’s grade by the reverse K square distance method[J].China’s Manganese Industry,1997,15(2):19-22.
14 荆永滨,王李管,毕林,等 .复杂矿体的块段模型建模算法[J].华中科技大学学报(自然科学版),2010,38(2):97-100.
Jing Yongbin , Wang Liguan , Bi Lin ,et al .Robust creation of block model from complex orebody model[J].Journal Huazhong University of Science and Technology(Natural Science Edition),2010,38(2):97-100.
15 Choudhury S , Chatterjee S .Pit optimization and life of mine scheduling for a tenement in the Central African Copper belt[J].International Journal of Mining Reclamation and Environment,2014,28(3):200-213.
16 胥孝川,顾晓薇,王青,等 .露天矿多采区受约束条件下全境界优化[J].东北大学学报(自然科学版),2016,37(1):79-83,93.
Xu Xiaochuan , Gu Xiaowei , Wang Qing ,et al .Optimizing the whole boundary of open-pit mining areas with restrictions[J].Journal of Northeastern University (Natural Science),2016,37(1):79-83,93.
[1] JIA Mingtao, TU Xiaoteng, REN Zhuli, CHEN Xin, SONG Huaqiang. Optimization and Application of Open Pit Boundary Based on Improved Maximum Flow Minimum Cut Algorithm [J]. Gold Science and Technology, 2018, 26(3): 318-324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!