img

Wechat

Adv. Search

Gold Science and Technology ›› 2018, Vol. 26 ›› Issue (6): 736-743.doi: 10.11872/j.issn.1005-2518.2018.06.736

Previous Articles     Next Articles

Simulation and Evaluation of Engineering Response Under the Mining of Overlapping-Orebody

Jianhua HU(),Chen GAO,Chun YANG   

  1. 1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2017-07-10 Revised:2017-10-31 Online:2018-12-31 Published:2019-01-24

Abstract:

The interaction and response law of overlapping-orebody mining are important factors that have significant influence on mining safety.The overlapping-orebody of Huashugou copper mine in Jingtieshan area where the upper iron orebody adjoins the under copper orebody was chosen as the research objects.Based on the coupled 3D Mine-Midas-FLAC3Dtechnology,combined with practical mining and filling process of the mine,a numerical analysis model for the response of FeV orebody engineering under the condition of copper orebody in the filling section was established.Then the data including displacement and stress of stoping tunnel of FeV orebody were obtained and were used to analyze the mining process of FeV orebody.Results show that maximum excavating perturbation during mining and filling process of research area occurs in 2 865 m stoping tunnel,and the maximum displacement is 2.3 cm,the maximum amplitude of stress is 11.34% and the maximum shear stress is 1.27 MPa,respectively.TheZaxis stress in the center of cavity roof remains decreasing,and it transfers to all round.The shear stress in the center of cavity roof keeps unchanged while it around the edge of cavity changes drastically.During the mining process of test stope,2 880 m and 2 895 m stoping tunnel above FeV orebody are in steady state.Consequently,stoping process can be accelerated to boost productivity,so as to improve the recovery rate of ore.

Key words: stress, displacement, monitoring, overlapping-orebody, mining disturbance, fine modeling, simulation, safety evaluation

CLC Number: 

  • TD853

Fig.1

Three dimensional digital model of orebody spatial position"

Fig.2

Computational model of engineering response"

Table 1

Mechanical parameters of rock mass and filling body"

岩体类别 体积模量K/GPa 剪切模量G/GPa 泊松比υ 黏聚力/MPa 内摩擦角/(°) 抗压强度/MPa 抗拉强度/MPa 密度/(kg·m-3
围岩 4.26 2.44 0.27 4.2 47.8 58.1 4.9 3 156
铜矿 6.33 3.09 0.28 6.7 50.2 83.2 6.5 3 417
铁矿 5.48 2.52 0.30 5.3 48.5 78.2 5.6 3 323
充填体 0.48 0.22 0.30 0.3 43.0 2.02 0.2 1 961

Fig.3

Actual engineering and measuring point layout of the mine under different subsection levels"

Fig.4

Zaxis displacement curve of measured points at 2 865 m(a),2 880 m(b)and 2 895 m(c)"

Table 2

Statistical results of maximum displacement monitoring at different levels"

测点编号 测点位置(距采场中心)/m 最大Z方向位移/cm
2 865 m分段 2 880 m分段 2 895 m分段 2 865 m分段 2 880 m分段 2 895 m分段
1 16 15 15 -1.26 -0.82 -0.80
2 15 14 13 -1.35 -0.95 -0.81
3 14 15 14 -0.96 -0.93 -0.72
4 2 3 3 -1.48 -0.98 -0.98
5 0 0 0 -2.30 -1.58 -1.05
6 2 2 2 -1.34 -1.34 -0.97
7 30 30 35 -0.57 -0.50 -0.53
8 30 30 35 -0.66 -0.57 -0.58
9 30 30 35 -0.73 -0.50 -0.48

Fig.5

Zaxis stress monitoring curve"

Table 3

Statistical analysis results ofZaxis stress at different levels"

测点编号 Z方向应力变化范围/MPa 变化绝对差/MPa Z方向应力扰动率/%
2 865 m分段 2 880 m分段 2 895 m分段 2 865 m分段 2 880 m分段 2 895 m分段 2 865 m分段 2 880 m分段 2 895 m分段
1 -14.33~-13.87 -14.23~-13.67 -13.79~-13.41 0.46 0.56 0.38 1.63 2.01 1.40
2 -14.66~-12.36 -14.10~-13.42 -13.74~-13.18 2.30 0.68 0.56 8.51 2.47 2.08
3 -14.59~-14.20 -14.07~-13.69 -13.61~-13.00 0.39 0.38 0.61 1.35 1.37 2.29
4 -14.56~-11.82 -14.26~-13.23 -13.53~-12.71 2.74 1.03 0.82 10.39 3.75 3.12
5 -14.53~-11.57 -13.88~-12.77 -13.85~-12.75 2.96 1.11 1.10 11.34 4.17 4.14
6 -14.55~-12.34 -13.97~-12.83 -13.46~-12.76 2.21 1.14 0.70 8.22 4.25 2.67
7 -14.53~-14.25 -14.22~-14.33 -13.47~-13.54 0.28 -0.11 -0.07 0.97 0.39 0.26
8 -14.53~-14.79 -13.98~-14.08 -13.45~-13.50 -0.26 -0.1 -0.05 0.89 0.36 0.19
9 -14.64~-14.88 -13.96~-13.79 -13.43~-13.46 -0.24 0.17 -0.03 0.81 0.61 0.11

Fig.6

Shear stress monitoring curve"

Table 4

Statistical results of maximum shear stress at different levels"

测点编号 剪应力/(×105Pa)
2 865 m分段 2 880 m分段 2 895 m分段
1 -6.00 -3.32 -2.23
2 -0.85 -0.47 0.38
3 5.30 3.21 1.75
4 -11.71 -8.91 -3.74
5 1.04 -1.43 -0.79
6 12.70 6.26 3.44
7 -2.43 -1.09 -0.46
8 -0.23 -0.13 0.31
9 0.98 0.37 0.75
1 胡建华,雷涛,周科平,等 .基于采矿环境再造的开采顺序时变优化研究[J].岩土力学,2011,32(8):2517-2522.
Hu Jianhua , Lei Tao , Zhou Keping ,et al .Time-varying optimization study of mining sequence based on reconstructed mining environment[J].Rock and Soil Mechanics,2011,32(8):2517-2522.
2 胡建华,苏家红,周科平,等 .顶板诱导崩落模式选择时变数值分析[J].岩土力学,2008,29(4):931-936.
Hu Jianhua , Su Jiahong , Zhou Keping ,et al .Time-varying numerical analysis of mode in induction caving roof[J].Rock and Soil Mechanics,2008,29(4):931-936.
3 王永年,殷世华 .岩土工程安全监测手册[M].北京:中国水利水电出版社,1999.
Wang Yongnian , Yin Shihua .Safety Monitoring Handbook for Geotechnical Engineering[M].Beijing:China Water & Power Press,1999.
4 周科平 .采矿过程模拟与仿真[M].长沙:中南大学出版社,2012.
Zhou Keping .Simulation of Mining Process[M].Changsha:Central South University Press,2012.
5 张向东,黄宇,谷文军 .隧道围岩施工监测及位移动态模拟分析[J].世界科技研究与发展,2011,33(6):952-954.
Zhang Xiangdong , Huang Yu , Gu Wenjun .Monitoring and dynamic simulating of surrounding displacements in tunnel construction[J].World Sci-Tech R&D,2011,33(6):952-954.
6 张春刚 .桩锚支护深基坑监测数据分析及FLAC数值模拟[D].北京:中国地质大学,2011.
Zhang Chungang .Monitoring Data Analysis and FLAC Numerical Simulation of Deep Excavation Applying the Pile-Anchor System[D].Beijing:China University of Geosciences,2011.
7 马凤山,郭捷,李克蓬,等 .三山岛海底金矿开采充填体与顶板岩层的变形监测研究[J].黄金科学技术,2016,24(4):66-72.
Ma Fengshan , Guo Jie , Li Kepeng ,et al .Monitoring and research for the deformation of mine backfill and roof surrounding rock when exploiting Sanshandao seabed gold mine[J].Gold Science and Technology,2016,24(4):66-72.
8 李克蓬,马凤山,郭捷,等 .三山岛海底金矿开采充填体与围岩变形规律的数值模拟[J].黄金科学技术,2016,24(4):73-80.
Li Kepeng , Ma Fengshan , Guo Jie ,et al .Numerical simulation of mine backfill and surrounding rock deformation when exploiting Sanshandao seabed gold mine[J].Gold Science and Technology,2016,24(4):73-80.
9 吴意谦,朱彦鹏 .兰州市湿陷性黄土地区地铁车站深基坑变形规律监测与数值模拟研究[J].岩土工程学报,2014,36(增2):404-411.
Wu Yiqian , Zhu Yanpeng .Monitoring and numerical simulation of deformation law of deep foundation pit of subway station in Lanzhou collapsible loess[J].Chinese Journal of Geotechnical Engineering,2014,36(Supp.2):404-411.
10 李四维,高华东,杨铁灯 .深基坑开挖现场监测与数值模拟分析[J].岩土工程学报,2011,33(增1):291-298.
Li Siwei , Gao Huadong , Yang Tiedeng .Monitoring and numerical analysis of a deep foundation pit[J].Chinese Journal of Geotechnical Engineering,2011,33(Supp.1):291-298.
11 吴姗,宋卫东,杜建华,等 .高陡边坡下充填法开采挂帮矿稳定性数值模拟与安全监测[J].采矿与安全工程学报,2013,30(6):874-879.
Wu Shan , Song Weidong , Du Jianhua ,et al .Stability of numerical simulation and security monitoring of filling method to mining the hanging wall ore on high-steep slope[J].Journal of Mining and Safety Engineering,2013,30(6):874-879.
12 白永健,郑万模,邓国仕,等 .四川丹巴甲居滑坡动态变形过程三维系统监测及数值模拟分析[J].岩石力学与工程学报,2011,30(5):974-981.
Bai Yongjian , Zheng Wanmo , Deng Guoshi ,et al .Three-dimensional system monitoring and numerical simulation on the dynamic deformation process of Jiaju landslide in Danba,Sichuan[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(5):974-981.
13 Hu J H , Lei T , Zhou K P ,et al .Mechanical response of roof rock mass unloading during continuous mining process in underground mine[J].Transactions of Nonferrous Metals Society of China,2011,21(12):2727-2733.
14 Abdellah W , Raju G D , Mitri H S ,et al .Stability of underground mine development intersections during the life of a mine plan[J].International Journal of Rock Mechanics and Mining Sciences,2014,72:173-181.
15 Yang X J , Hou D G , Tao Z G ,et al .Stability and remote real-time monitoring of the slope slide body in the Luoshan mining area[J].International Journal of Mining Science and Technology,2015,25(5):761-765.
16 周科平,杜相会 .基于3DMINE-MIDAS/GTS-FLAC3D耦合的残矿回采稳定性研究[J].中国安全科学学报,2011,21(5):17-22.
Zhou Keping , Du Xianghui .Study on stability of residual ore recovery based on coupling of 3D MINE-MIDAS/GTS-FLAC3D [J].China Safety Science Journal,2011,21(5):17-22.
17 曾庆田,刘科伟,严体,等 .基于多数值模拟方法联合的自然崩落法开采研究[J].黄金科学技术,2015,23(1):66-73.
Zeng Qingtian , Liu Kewei , Yan Ti ,et al .Study on natural caving mining method based on multi-numerical simulation method[J].Gold Science and Technology,2015,23(1):66-73.
18 邓红卫,郭旺,周科平,等 .基于FLAC3D稳定性分析的残矿回采方案研究[J].金属矿山,2011,40(12):18-21.
Deng Hongwei , Guo Wang , Zhou Keping ,et al .Residual ore mining program based on FLAC3Dstability analysis[J].Metal Mine,2011,40(12):18-21.
19 邓红卫,杨懿全,邓畯仁,等 .采空区下方高应力环境下深部矿体回采时序研究[J].黄金科学技术,2017,25(2):62-69.
Deng Hongwei , Yang Yiquan , Deng Junren ,et al .Study on mining sequence of deep orebody under high stress environment below goaf[J].Gold Science and Technology,2017,25(2):62-69.
20 闫长斌,徐国元,李夕兵 .爆破震动对采空区稳定性影响的FLAC3D分析[J].岩石力学与工程学报,2005,24(16):2894-2899.
Yan Changbin , Xu Guoyuan , Li Xibing .Stability analysis of mined-out areas influenced by blasting vibration with FLAC3D [J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2894-2899.
[1] Chong CHEN,Xibing LI,Fan FENG. Numerical Study on Damage Zones of the Induced Roadway Surrounding Rock [J]. Gold Science and Technology, 2018, 26(6): 771-779.
[2] Zhipeng LAN,Xinmin WANG,Qinli ZHANG,Qiusong CHEN. Experiment Research on Magnetized Water’s Effect on Friction Loss of Paste Slurry in Pipeline Transport [J]. Gold Science and Technology, 2018, 26(6): 811-818.
[3] Deming WU,Shan YANG,Ximei WANG. An Improved Evaluation Method for Safety Harmony Equation of Tailing Ponds [J]. Gold Science and Technology, 2018, 26(5): 662-668.
[4] Bo PENG. Numerical Simulation Study of Seepage Stability of Mudstone Slope with Dif-ferent Rainfall Types Coupled with Sudden Drop of Reservoir Water Level [J]. Gold Science and Technology, 2018, 26(5): 647-655.
[5] Bing LIU,Xibing LI. Study on Two-phase Flow Loop Test of High Concentration Backfill with Total Phosphorus Waste [J]. Gold Science and Technology, 2018, 26(5): 615-621.
[6] Guang LI,Fengshan MA,Gang LIU,Jie GUO,Huigao GUO,Yongyuan KOU. Study on Supporting Parametric Optimizing Design and Evaluate Supporting Effect of Deep Roadway in Jinchuan Mine [J]. Gold Science and Technology, 2018, 26(5): 605-614.
[7] Jianhua HU,Qifan REN,Zhonghua QI,Jiwei ZHANG. Regress Optimize Model of Limit Exposure Area to Stope in Wohushan Iron Mine [J]. Gold Science and Technology, 2018, 26(4): 503-510.
[8] Wenchen LI,Lijie GUO,Xinzheng CHEN,Zongnan LI,Xin LI. Similarity Simulation Experiment on Strength Distribution in Three-Dimen-sional Spatial of Cemented Tailing Backfill [J]. Gold Science and Technology, 2018, 26(4): 528-534.
[9] HU Guiying, LIU Kewei, DU Xin, LI Xiaohan. Research on Smooth-cutting Method and Its Application in Tunnel Excavation [J]. Gold Science and Technology, 2018, 26(3): 349-356.
[10] SHENGJianlong, ZHAIMingyang. Reliability Analysis and Sampling Method Comparison of Jinjiling Rock Slope Based on Stochastic Response Surface Method [J]. Gold Science and Technology, 2018, 26(3): 297-304.
[11] WANG Haibo, WEI Guoli, ZONG Qi, XU Ying. Numerical Simulation and Application Research on Joint Development Rock Roadway Blasting Excavation [J]. Gold Science and Technology, 2018, 26(3): 342-348.
[12] WU Hao, CHEN Bingrui, CHI Xiuwen, WANG Bo, XU Shida, JIANG Hongbo. Stability Analysis of Deep Stope Based on Regional Microseismic Activity [J]. Gold Science and Technology, 2018, 26(3): 325-333.
[13] JING Yongbin, ZHAO Xintao, FENG Xinglong. Study on 3D Simulation of Rock Fraghmentation for Jointed Rock Mass [J]. Gold Science and Technology, 2018, 26(3): 357-364.
[14] YANG Mingcai, SHENG Jianlong, YE Zuyang, DONG Shu. Analysis of Sensitivity Factors of Open-pit Mine Slope Stability and Impact Based on FlAC3D [J]. Gold Science and Technology, 2018, 26(2): 179-186.
[15] LIN Ge, GONG Fengqiang. Research on Evaluation Index of Red Sandstone Instability Under Different Stress [J]. Gold Science and Technology, 2018, 26(2): 195-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!