img

Wechat

Adv. Search

Gold Science and Technology ›› 2016, Vol. 24 ›› Issue (2): 51-58.doi: 10.11872/j.issn.1005-2518.2016.02.051

Previous Articles     Next Articles

Neoarchaean TTG Petrogenesis in Mazhuang,Songshan Area and Its Geological Significance

LI Xinglong,SI Rongjun,MAO Guangyu,XIE Xiang   

  1. College of Resources and Environments,Henan Polytechnic University,Jiaozuo   454000,Henan,China
  • Received:2015-08-24 Revised:2016-01-20 Online:2016-04-28 Published:2016-05-30

Abstract:

Songshan is one of the typical area where the Neoarchean TTG rocks are well exposed.Neoarchean TTG rocks in Mazhuang which are mainly distributed in Songshan with the features of grayish-white colour,medium-grained structure,gneissic and banded structure.Geochemical study shows that Mazhuang TTG rocks are featured with high concentration of Na2O(4.34%~6.49%) and SiO2(>69.24%),poor in iron and magnesium,and with high Na2O/K2O (2.0~3.2) ratio.The average content of Al2O3 is 16.51%(>15%,its range is 14.35%~17.68%),this phenomenon shows the characteristics of TTG gneiss with weak peraluminous.Trace elements analysis indicates that ΣREE is 11.57×10-6~30.94×10-6,depleted in HREE,with strong differentiation in LREE and HREE.Eu positive abnormality is obviously,high contents of Sr and Sr/Y ratio,low contents of Cr,Yb and Y,reflect that it has the similar geochemical characteristics with high silicon adakite in Cenozoic era.The formation environment of Mazhuang TTG rocks is similar with island arc volcano rock according to the environment discrimination diagram of trace element geochemical.It is concluded that Mazhuang TTG rock mass is formed by the partial melting of subducted oceanic crust which is aqueous basaltic under the high pressure.

Key words: Neoarchean, TTG gneisses, geochemical, Songshan area, Neoarchean, TTG gneisses, geochemical, Songshan area

CLC Number: 

  • P595

[1] Jahn B M,Glikson A Y,Peucat J J,et al.REE geochemistry and isotopic data of Archaean silicic volcanics and granitoids from the Pilbara Block,western Australia:Implications for the early crustal evolution[J].Geochim Cosmochim Acta,1981,45(9):1633-1652.
[2] Moyen J F,Martin H,Jayananda M.Multi-element geochemical modelling of crust-mantle interactions during late-Archaean crustal growth:the Closepet granite (South India) [J].Precambrian Research,2001,112(1/2):87-105.
[3] 伍家善,耿元生,沈其韩,等.中朝古大陆太古宙地质特征及构造演化[M].北京:地质出版社,1998.
[4] 劳子强.登封群剖面特征及其划分[J].河南地质,1989,7(3):20-26.
[5] 劳子强,王世炎,张良,等.嵩山地区前寒武纪地质构造特征与演化[M].北京:中国环境科学出版社,1996.
[6] 李兴隆,司荣军,毛广钰,等.嵩山地区新太古宙歪咀山岩体成因及其地质意义[J].西北地质,2016,49(1):50-60.
[7] Martin H.The mechanisms of petrogenesis of the Archaean continental crustcomparison with odern processes[J].Lithos,1993,30(3):373-388.
[8] 周艳艳,赵太平,薛良伟,等.河南篙山地区新太古代TTG质片麻岩的成因及其地质意义:来自岩石学、地球化学及同位素年代学的制约[J].岩石学报,2009,25(2):331-347.
[9] 周艳艳,赵太平,薛良伟,等.河南嵩山地区新太古代斜长角闪岩的地球化学特征与成因[J].岩石学报,2009,25(11):3043-3056.
[10] Barker F.Trondhjemites:Definition,environment and hypothesis of origin[M]//Barker F.Trondhjemites,Dacites and Related Rocks.Amsterdam:Elsevier,1979:1-12.
[11] Barker F,Arth J G.Generation of trondhjemite-tonalite liquids and Archaean bimodal trondhjemite-basalt suites[J].Geology,1976,4:596-600.
[12] Atherton M P,Petford N.Generation of sodium-rich magmas from newly underplated basaltic rust[J].Nature,1993,362:144-146.
[13] Sun S S and McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]//Saunders S D and Norry M J.
Magatism in ocean basins.Geological Socienty of London,1989,42:313-345.
[14] Cullers R L,Graf J L,李文达.热液体系中的稀土元素[J].国外火山地质,1987(1):20-23.
[15] Rapp R P,Shimizu N,Norman M D.Growth of early continentalcrust by partial melting of eclogite[J].Nature,2003,425:605- 609.
[16] 李孟江,王仁民,张莉.华北克拉通北缘尚义地区新太古代TTG成因分析:洋壳玄武岩不同深度下熔融的产物[J].地质通报,2012(5):686-695.
[17] Martin H,Smithies R H,Rapp R P,et al.An overview of  adakite,tonalite-trondhjemite-granodiorite (TTG) and sanukitoid:relationships and some implications for crustal evolution[J].Lithos,2005,79(1/2):1-24.
[18] Halla J,van Hunen J,Heilimo E,et al.Geochemical and numerical constraints on Neoarchean plate tectonics[J].Precambrian Research,2009,174(1/2):155-162.
[19] Moyen J F.The composite Archaean grey gneisses:Petrological significance,and evidence for a non-unique tectonic setting for Archaean crustal growth[J].Lithos,2011,123(1/4):21-36.
[20] Foley S F,Tiepolo M,Vannucci R.Growth of early continental crust controlled by melting of amphibolite in subduction zones[J].Nature,2002,417:637-640.
[21] Tatsumi Y,Ishizaka K.Origin of high-magnesian andesites in the Setouchi volcanic belt,southwest Japan,I.Petrographical and chemical characteristics[J].Earth and Planetary Science Letters,1982,60:293-304.
[22] Smithies R H.The Archaean tonalite-trondhjemite-granodiorite(TTG)series is not an analogue of Cenozoic adakite.Earth and Planetary Science Letters,2000,182(1):115-125.
[23] Van Hunen J,Van den Berg A P.Plate tectonics on the early  Earth:limitations imposed by strength and buoyancy of  subducted lithosphere[J].Lithos,2008,103(1/2):217-235.
[24] Condie K C.Archean Greenstone Belts[M].Amsterdam:Elsevier Science,1981:95-96.
[25] Condie K C.Episodic continental growth and supercontinents:A mantle avalanche connection[J].Earth and Planetary Science Letters,1998,163:97-108.

Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!