img

Wechat

Adv. Search

Gold Science and Technology ›› 2015, Vol. 23 ›› Issue (5): 60-65.doi: 10.11872/j.issn.1005-2518.2015.05.060

Previous Articles     Next Articles

Numerical Simulation of Cemented Filling Pipeline Transportation of High-density Whole Tailing Based on ANSYS/FLOTRAN

YANG Bo,YANG Shijiao,WANG Fulin   

  1. School of Nuclear Resources Engineering,University of South China,Hengyang    421001,Hunan,China
  • Received:2015-04-22 Revised:2015-06-08 Online:2015-10-28 Published:2015-12-09

Abstract:

The Gravity-flowed Convey of high-density whole tailing is already widely applied as time goes on and distributed around the globe in metal mine.A detailed numerical simulation study was conducted of a pipeline transportation of high-density whole tailing of iron ore,and based on high-density whole tailing slurry,main physical parameters are defined and the construction of the numerical model of the pipeline transportation of high-density whole tailing cemented filling slurry was also completed at the same time.Depend on the application of ANSYS/FLOTRAN,we will simulate the dynamic feature of high-density whole tailing slurry when it works in the pipeline,and also conducted a comparative analysis between the simulated result and the theoretical value.At the same time,the numerical calculation of transportation of slurry was also conducted and studies the result of the calculation.The slurry whose concentration is between 68% and 78% will achieve Gravity-flowed Convey by the intake velocity of 1.5 m/s,2.0 m/s and 2.5 m/s.When it comes to the simulated result and the theoretical calculation,we find resistance loss of both are almost unanimous.With the initial velocity of slurry increasing,the impact force coming from the concentration of slurry is becoming lighter and lighter at the same time.At last,we can conclude that the numerical model is reasonable and practicable,and this review would provide a theoretical guide for the application of Gravity-flowed Convey of high-density whole tailing cemented filling slurry.

Key words: pipeline transportation, numerical simulation, theoretical calculation, resistance loss

CLC Number: 

  • TD853.34

[1] 贺志宏.高村矿区建立干式充填储料系统方案初探[J].黄金科学技术,2004,12(3):18-21.
[2] 路世豹,李晓,廖秋林,等.充填采矿法的应用前景与环境保护[J].有色金属(矿山部分),2004,56(1):2-4.
[3] 贺志坚,王跃江,杨秀瑛.红花沟金矿回采工艺特点与创新[J].黄金科学技术,2004,12(4):22-26.
[4] 田明华.缓倾斜中厚矿体机械化上向水平分层充填采矿法关键技术研究[D].长沙:中南大学,2009.
[5] 马云庆,王瑞星,何顺斌,等.无底柱后退式竖向分条分段充填采矿法研究[J].黄金科学技术,2014,22(4):67-71.
[6] 乔登攀,程伟华,张磊,等.现代采矿理念与充填采矿[J].有色金属科学与工程,2011,2(2):7-14.
[7] 王新民,肖卫国,张钦礼.深井矿山充填理论与技术[M].长沙: 中南大学出版社,2010:12-40.
[8] 薛希龙.黄梅磷矿高浓度金尾砂充填技术研究[D].长沙:中南大学,2012.
[9] 朱国清.高浓度结构流全尾砂胶结充填实验研究与应用[J].矿业工程,2011,9(6):20-22.
[10] 吴迪,蔡嗣经,杨威,等.基于CFD的充填管道固液两相流输送模拟及试验[J].中国有色金属学报,2012,22(7):2133-2140.
[11] Wang X M,Zhao J W,XUE J H,et al.Features of pipe transportation of paste-like backfilling in deep mine[J].Journal of Central South University of Technology,2011,18(5):1413-1417.
[12] 南世卿,胡树军,胡亚军.石人沟铁矿充填管道布置方案优化研究[J].矿业研究与开发,2014,34(3):25-28.
[13] 王海瑞.全尾砂胶结充填自流输送管路改造及优化[D].长沙:中南大学,2010.
[14] 罗欢.东乡铜矿深部胶结充填系统输送参数优化研究[D].赣州:江西理工大学,2011.
[15] 聂文波,李凤义,陈雷.桃山矿胶结充填管道输送系统充填试验[J].金属矿山,2014,(9):35-38.
[16] 羊羽翔,付建新,宋卫东.充填管道布置方案优化中的数值模拟分析[J].黄金,2014,35(8):37-40.
[17] 周旭,王佩勋.大倍线管道自流输送胶结充填技术[J].金属矿山,2011,(8):25-28.
[18] 陶平凯.基于ANSYS FLOTRAN的管道输送参数优化[J].金属矿山,2012,(11):43-45.
[19] 马黎明.黄沙坪深部胶结充填管输系统优化研究[D].长沙:中南大学,2012.
[20] 费俊祥.浆体与粒状物料输送水力学[M].北京:清华大学出版社,1992:22-56.

[1] Xiangrui HE, Xianyang QIU, Xiuzhi SHI, Xiaoyuan LI, Wei ZHI, Jun LIU, Yuanlai WANG. Study on the Movement Law of Overlying Strata in Underground Mining with Nonlinear Elastic Foundation Beam [J]. Gold Science and Technology, 2024, 32(4): 640-653.
[2] Yunlin YU, Kepeng HOU, Bajiu YANG, Yong CHENG, Taihong LU, Nannan ZHANG. Study on Pillar Mining Scheme of Gaofengshan Ore Section in Yunxi [J]. Gold Science and Technology, 2024, 32(3): 445-457.
[3] Bo LI, Chen WEN, Xiuzhi SHI. Optimization of Stope Sidewall Controlled Blasting Parameters for High-Stress Fan-Shaped Medium-Depth Hole [J]. Gold Science and Technology, 2024, 32(3): 511-522.
[4] Kuan LIU, Guanwang MO, Xiang LI, Pinghuan SHEN, Bo WAN, Jiankun LIU. Optimization of the Construction Parameters of Super-large Section Flat Structure Tunnel [J]. Gold Science and Technology, 2024, 32(2): 330-344.
[5] Kaibin WANG, Qin LIU, Hongtao WANG. Study on the Load Transfer Characteristics and Influence Factors of Anchora-ge Segment of Pressure-type Anchor Cable [J]. Gold Science and Technology, 2024, 32(1): 123-131.
[6] Zefeng XU, Xiuzhi SHI, Rendong HUANG, Wenzhi DING, Xin CHEN. Study on Filling Pipeline Optimization Based on Full Pipe Transportation [J]. Gold Science and Technology, 2024, 32(1): 160-169.
[7] Jielin LI, Yiliang LIU, Yupu WANG, Zaili LI, Keping ZHOU, Chunlong CHENG. Influence of Forced-Exhaust Mixed Ventilation Parameters on the Cooling Effect of Artificial Cooling in High-temperature Blind Roadway [J]. Gold Science and Technology, 2024, 32(1): 63-74.
[8] Honglu FEI, Hainan JI, Jie SHAN. Optimization and Comparative Experimental Study of Charge Structure of Water Medium Interval on Open-air Step [J]. Gold Science and Technology, 2023, 31(6): 930-943.
[9] Wenfa SHAN, Xiancheng MAO, Zhankun LIU, Hao DENG, Jin CHEN, Wei ZHANG, Haizheng WANG, Xin YANG. Numerical Simulation of Metallogenic Processes of Dayingezhuang Gold Deposit in Jiaodong Peninsula and Its Prospecting Significance [J]. Gold Science and Technology, 2023, 31(5): 707-720.
[10] Yu ZHANG, Wenji WANG, Jiaqi SUN, Yonggang XIAO. Fracture Performances of Bedding Structure Slate Under Dynamic Loading [J]. Gold Science and Technology, 2023, 31(5): 803-810.
[11] Yanan ZHAO, Yihang ZHAO, Zhongming JIANG, Hongmin ZHAO. Preliminary Study on Static and Dynamic Stability of Canister for High-level Radioactive Nuclear Waste Disposal Based on Discrete Element Method [J]. Gold Science and Technology, 2023, 31(4): 592-604.
[12] Heng MA,Jiayi GAO,Shihu LI,Ke GAO. Influence of Jet Angle of Twin Parallel Air Curtains on the Tunnel Airflow [J]. Gold Science and Technology, 2022, 30(5): 743-752.
[13] Duiming GUO,Guoqing LI,Jie HOU,Nailian HU. Optimization of Local Ventilation Parameters of Deep Mine Excavation Roadway Based on FLUENT [J]. Gold Science and Technology, 2022, 30(5): 753-763.
[14] Zhanxing ZHOU,Kewei LIU,Xudong LI,Xiaohui HUANG,Sizhou MA. Numerical Simulation of Dynamic Response of Tunnel Lining Under Oil Tank Explosion [J]. Gold Science and Technology, 2022, 30(4): 612-622.
[15] Lingzhi ZHONG,Xiancheng MAO,Zhankun LIU,Keyan XIAO,Chuntan WANG,Wu CHEN. Ore-controlling Effect of Structural Geometry Features in the Sanshandao Gold Belt,Jiaodong Peninsula,China: Insights from Numerical Simulation [J]. Gold Science and Technology, 2022, 30(3): 352-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!